
EE309
Lecture 2: EE209/EE485 Review

INSU YUN (윤인수)

School of Electrical Engineering, KAIST

[Lecture slides based on EE209]

3

General purpose hardware (x86 architecture)

Multicore: 4 ~ 60 cores (tens of CPU cores)

Multiple 10-Gigabit Ethernet (becoming the norm)

What does a computer look like today?

https://oslab.kaist.ac.kr/

4

ENIAC (1945)
The first computer

Smartphones today

IBM mainframe (1969)
Used by NASA for Apollo
11 to land on the moon

Millions of
times faster

Trend#1: Smaller and more powerful

https://oslab.kaist.ac.kr/

5

Trend#2: Ubiquitous, everywhere

Computers are dominating our lives!

More things are becoming computers

Cars, watches, speakers, pets, … what’s next?

https://oslab.kaist.ac.kr/

6

Trend#3: Growing to a larger scale

Scale of the “Cloud”

Many machines spread out around the globe

Facebook: hundreds of thousands of machines

Microsoft: 4 million servers (~2021)

Google: 2.5 million servers in 2016

Amazon, Google, Facebook, and Microsoft spent $37B in 2020Q3

https://oslab.kaist.ac.kr/

7

Google’s Datacenters

Rack

Machines

https://oslab.kaist.ac.kr/

8

Internet-based Services

Hierarchical Structure
of Internet-based Services

Smart Devices

Cloud

Clients

Servers

https://oslab.kaist.ac.kr/

9

Endless applications using cloud

https://oslab.kaist.ac.kr/

10

Understanding Computer Systems and Software

Cloud computing industry

Software industry

Not only required in software companies, but just about everywhere

Traditional semiconductor industry

SoC chip designers. Device manufacturing, …

Automobile industry

…

https://oslab.kaist.ac.kr/

11

Support structured programming

Support development of the Unix OS and tools

As Unix became popular, so did C

Implications for C

Good for system-level programming

But also used for application-level programming

Low-level

Close to assembly language; close to machine language; close to

hardware

Efficiency over portability

Design goals of C

https://oslab.kaist.ac.kr/

12

hello.c:

#include <stdio.h>

int main(void) {
printf("Hello, world\n");
return 0;

}

Hello World

$ gcc209 hello.c (compile)

$./a.out (execution)

Include
information about
standard library

main()
function:

entry point
of execution

Statements of
main are

enclosed in
braces

main() calls
printf()

function to
print the

string

https://oslab.kaist.ac.kr/

13

C Variable Types

Variable

Name given to a memory area that a program manipulates

Each variable has a type

Character type

char (8 bit)

Integral type

short (16 bit), int (32 bit), long (64 bit on 64-bit OS)

Floating point type

float (32 bit), double (64 bit), long double (128 bit)

Generic type

void * (64 bit on 64-bit OS)

char x = ‘a’;
int x = 10;
float x = 3.14;

https://oslab.kaist.ac.kr/

14

Constant: identifier whose value doesn’t change

Array: a collection of elements of the same type

Pointer: holds a memory address of a variable of some type

Constants, Array, Pointer Type

#define MAX 10
const int MAX = 10;
enum {MAX = 10};

char c[10];
double pi[5][2];

int *p;

https://oslab.kaist.ac.kr/

15

Variables and Pointers

100

102

‘a’

‘b’

3.5

420

Memory

1

2

3

4

5

6

Addresses Stored values

int x

int* p

Variable:

Pointer:

https://oslab.kaist.ac.kr/

16

String: a collection of characters

Structure: a collection of elements whose types can be different

Strings and Structures

char *s = “hello world\n”;
char s[12] = “KAIST EE209”;

struct student {
int id;
char *name;

};

https://oslab.kaist.ac.kr/

17

Arithmetic and Logic Operations

https://www.tutorialspoint.com/cprogramming/c_operators.htm

Arithmetic operators

+, -, *, /, %, unary -

Logic operators

&&, ||, !

Relational operators

==, !=, >, <, >=, <=

Bitwise operators

>>, <<, &, |, ^

Assignment operators

=, *=, /=, +=, -=, <<=, >>=, =, ^=, |=, %=

https://oslab.kaist.ac.kr/
https://www.tutorialspoint.com/cprogramming/c_operators.htm

18

Statement

Statements are fragments of the C program that are executed in sequence.

Informally: a command that takes a specific action

Typically terminated by ; (a terminator)

Assignment

if statement

Statements

switch/case statement

int i, j;
i = 10;
i = j = 0;

if (i < 0)
statement1;

else
statement2;

switch (i) {
case 1:

statement1;
break;

case 2:
statement2;
break;

default:
statement3;
break;

}

https://oslab.kaist.ac.kr/

19

for statement

Loop Statements (1)

int i = 0

statement 1
statement 2

i=i+1

i < 10?

statement 3

Yes

No

for (int i = 0; i < 10; i++){
statement 1;
statement 2;

}
statement 3;

https://oslab.kaist.ac.kr/

20

while statement

do while statement

Loop Statements (2)

statement 1
statement 2

i < 10?

statement 3

Yes

No

statement 1
statement 2

i < 10?

statement 3

Yes

No

while (i < 10){
statement 1;
statement 2;

}
statement 3;

do {
statement 1;
statement 2;

} while (i < 10)
statement 3;

https://oslab.kaist.ac.kr/

21

break; // get out of the current loop/switch

continue; // go to the start of the next round

goto SomeLabel;

Loop Statements (3)

while (i < 10) {
statement1;
statement2;
break;

}
statement3;

while (i < 10) {
statement1;
statement2;
continue;

}
statement3;

https://oslab.kaist.ac.kr/

22

Function Definition and Call

Function Definition with a Return Statement

Function Call

int add(int x, int y) {
return x+y;

}

int sum = add(3,5);

https://oslab.kaist.ac.kr/

23

Other Statements

Compound Statements

Comments // for readers, ignored by machines

{
statement1;
statement2;

}

/*
multiple
line
comment

*/

// single line comment

https://oslab.kaist.ac.kr/

EE485: Introduction to Environment and Tools for Modern Software Development

25

Building a C Program

hello.c

Compile and execute hello.c

#include <stdio.h>
int main(void)
{

/* Write "hello, world\n" to stdout. */
printf("hello, world\n");
return 0;

}

ee209@ubuntu:~$ gcc209 hello.c -o hello
ee209@ubuntu:~$./hello
hello, world

gcc209 is a script that executes
gcc -Wall -Werror -ansi -pedantic -std=c99

all warningsMake all warnings hard errorsSame as –std=c89Follow the ISO C standard specified by -stduse c99 standard

https://oslab.kaist.ac.kr/

26

hello.c

C Preprocessor
gcc209 -E hello.c >

hello.i

hello.i

C Compiler
gcc209 -S hello.i hello.s

C Assembler
gcc209 -c hello.s

hello.o libc.a

Linker
gcc209 hello.o -lc -o

hello

hello
Shortcut

gcc209 hello.c -o hello

Shortcut of All Processes

https://oslab.kaist.ac.kr/

EE485: Introduction to Environment and Tools for Modern Software Development

(Reference: The ART OF DEBUGGING with GDB, DDD, and ECLIPSE (TAD))

28

Typical Steps for Debugging with GDB

(a) Build with –g

(gdb) gcc –g insertsort.c –o insertsort

Adds extra information to executable file that GDB uses

Debugging symbols (e.g., line numbers, variable names, etc.)

(b) Run GDB in a different terminal

$ gdb insertsort

You can run GDB inside Emacs or VIM as well

(c) Set breakpoints, as desired

- the program would stop at each breakpoint when it’s executed

(gdb) break main

GDB sets a breakpoint at the first executable line of main()

(gdb) break process_data

GDB sets a breakpoint at the first executable line of process_data()

29

Typical Steps for Debugging with GDB (cont.)

(d) Run (or continue) the program

(gdb)run

GDB stops at the breakpoint in main()

(gdb)continue

GDB stops at the breakpoint in process_data()

(e) Step through the program, as desired

(gdb)step (repeatedly)

GDB executes the next line (repeatedly)

Note: When next line is a call of one of your functions:

step command steps into the function

next command steps over the function, that is, executes the next line without stepping into the

function

30

Typical Steps for Debugging with GDB (cont.)

(f) Examine variables, as desired

(gdb) print i

(gdb) print j

(gdb) print temp

GDB prints the value of each variable

(g) Examine the function call stack, if desired
(gdb) where

GDB prints the function call stack

Useful for diagnosing crash in large program

(h) Exit gdb
(gdb) quit

31

Other Useful Tips

How to run with command-line arguments?

(gdb) run arg1 arg2

How to handle redirection of stdin, stdout, stderr?

(gdb) run < somefile > someotherfile

Print values of expressions (later)

Break conditionally (later)

Materials so far are enough for basic usage of GDB

EE209: Programming Structures for Electrical Engineering

The material for this lecture is drawn from
Computer Systems: A Programmer’s Perspective (Bryant & O’Hallaron) Chapter 8

33

Context of this Lecture

Second half of the course

Previously Starting Now

C Language

Assembly Language

Machine Language

Application Program

Operating System

Hardware

language
levels
tour

service
levels
tour

Application programs, OS,
and hardware interact
via exceptions

34

Exceptions

Exception

An abrupt change in control flow in response to a change in processor state

Transfers control to OS

Examples:

Application program:

Requests I/O

Requests more heap memory

Attempts integer division by 0

Attempts to access privileged memory

Accesses variable that is not

in real memory (see upcoming

“Memory Management” lecture)

User presses key on keyboard

Disk controller finishes reading data

Synchronous (i.e.,
caused by the

execution of the
current instruction)

Asynchronous

35

Exceptional Control Flow

Application
program

Exception handler
in operating system

exception

exception
processing

exception
return
(optional)

36

Classes of Exceptions

There are 4 classes of exceptions

1. Interrupts

2. Traps

3. Faults

4. Aborts

37

(1) Interrupts

Application
program

Exception
handler

Cause: Signal from I/O device (asynchronously)
Examples:

User presses key
Disk controller finishes reading/writing data

(1) CPU interrupt
pin goes high

(2) After current instruction
finishes, control passes
to handler

(3) Handler runs

(4) Handler returns
control to next instr

38

(2) Traps

Application
program

Exception
handler

Cause: Intentional (application program requests OS service)
Examples:

Application program requests more heap memory
Application program requests I/O

Traps provide a function-call-like interface between application program and OS

(1) Application
program traps

(2) Control passes to
handler

(3) Handler runs

(4) Handler returns
control to next instruction

39

(3) Faults

Application
program

Exception
handler

Cause: Application program causes (possibly) recoverable error
Examples:

Application program accesses privileged memory (seg fault)
Application program accesses data that is not in real memory (page fault)

(1) Current instruction
causes a fault

(2) Control passes
to handler

(3) Handler runs

(4) Handler returns control to
current instruction or
aborts

40

(4) Aborts

Application
program

Exception
handler

Cause: Non-recoverable error
Example:

Parity check indicates corruption of memory bit (overheating, cosmic ray!, etc.)

(1) Fatal hardware
error occurs

(2) Control passes
to handler

(3) Handler runs

(4) Handler aborts
execution

41

Traps in Intel Processors
To execute a trap, application program should:

Place number in EAX register indicating desired functionality

Place parameters in EBX, ECX, EDX registers

Execute assembly language instruction “int 128”

Example: To request more heap memory…

movl $45, %eax
movl $1024, %ebx
int $128

In Linux, 45 indicates request
for more heap memory

Request is for 1024 bytes
Causes trap

42

System-Level Functions

For convenience, traps are wrapped in system-level functions

Example: To request more heap memory…

/* unistd.h */
void *sbrk(intptr_t increment);
…

/* unistd.s */
Defines sbrk() in assembly lang
Executes int instruction
…

/* client.c */
…
sbrk(1024);
…

A call of a system-level function,
that is, a system call

sbrk() is a
system-level
function

See Appendix for list of some Linux system-level functions

43

Processes

Program

Executable code

Process

An instance of a program in execution

44

Processes

Program

Executable code

Process

An instance of a program in execution

Each program runs in the context of some process

45

Processes

Program

Executable code

Process

An instance of a program in execution

Each program runs in the context of some process

Context consists of:

Process ID

Address space

TEXT, RODATA, DATA, BSS, HEAP, and STACK

Processor state

EIP, EFLAGS, EAX, EBX, etc. registers

etc.

46

Significance of Processes

Process is a profound abstraction

The process abstraction provides application programs with two

key illusions:

Private control flow

Private address space

47

Private Control Flow: Illusion

Process 1 Process 2

Hardware and OS give each application process the
illusion that it is the only process running on the CPU

Time

48

Private Control Flow: Reality

Process 1 Process 2

All application processes -- and the OS process --
share the same CPU(s) (i.e., multitasking, time slicing)

OS

Exception
Return from exception

Exception

Exception

Return from exception

Return from exception

Time

49

Context Switches

Context switch

The activity whereby the OS assigns the CPU to a different process

Occurs during exception handling, at the discretion of OS

Exceptions can be caused:

Synchronously, by application program (trap, fault, abort)

Asynchronously, by external event (interrupt)

Asynchronously, by hardware timer

So no process can dominate the CPUs

Exceptions are the mechanism that enables the illusion of private control flow

50

Context Details

What does the OS need to save/restore during a context switch?

Process state

New, ready, waiting, terminated

CPU registers

EIP, EFLAGS, EAX, EBX, …

I/O status information

Open files, I/O requests, …

Memory management information

Page tables (see “Memory Management” lecture)

Accounting information

Time limits, group ID, ...

CPU scheduling information

Priority, queues

51

Context Switch Details

Context

State that the OS needs to

restart a preempted process

Context switch

Save the context of current

process

Restore the saved context of

some previously preempted

process

Pass control to this newly

restored process

Running

Running

Save context

Load context

Save context

Load context

...

...

RunningWaiting

Waiting

Waiting

Process 1 Process 2

52

When Should OS Do Context Switch?

When a process is stalled waiting for I/O

Better utilize the CPU, e.g., while waiting for disk access

CPU CPU CPUI/O I/O I/O1:
CPU CPU CPUI/O I/O I/O2:

53

When Should OS Do Context Switch?

When a process is stalled waiting for I/O

Better utilize the CPU, e.g., while waiting for disk access

When a process has been running for a while

Sharing on a fine time scale to give each process the illusion of running on its own machine

Trade-off efficiency for a finer granularity of fairness

CPU CPU CPUI/O I/O I/O1:
CPU CPU CPUI/O I/O I/O2:

54

Life Cycle of a Process

Running: instructions are being executed

Waiting: waiting for some event (e.g., I/O finish)

Ready: ready to be assigned to a processor

Create Ready Running Termination

Waiting

56

Motivation for Memory Hierarchy

Faster storage technologies are more expensive

Cost more money per byte

Have lower storage capacity

Require more power and generate more heat

The gap between processing and memory is widening

Processors have been getting faster and faster

Memory speed is not improving as dramatically

Well-written programs tend to exhibit good locality

Across time: repeatedly referencing the same variables

Across space: often accessing other variables located nearby

Want the speed of fast storage with the cost and capacity of slow storage

Key idea: memory hierarchy!

57

Simple Three-Level Hierarchy

Registers

Usually reside directly on the processor chip

Essentially no latency, referenced directly in instructions

Low capacity (e.g., 32-512 bytes)

Main memory

Around 100 times slower than a clock cycle

Constant access time for any memory location

Modest capacity (e.g., 1 GB-512GB)

Disk

Around 100,000 times slower than main memory

Faster when accessing many bytes in a row

High capacity (e.g., 1-10s of TB)

http://images.google.com/imgres?imgurl=http://www.pclaunches.com/entry_images/1007/09/seagate_momentus5400-PSD-2.jpg&imgrefurl=http://www.pclaunches.com/hard_drive/seagate_momentus_5400_psd_laptop_hybrid_drives_announced.php&h=637&w=450&sz=82&hl=en&start=35&sig2=_ME26RXfKNlTi6p619PNog&tbnid=xwNBeEytE4fYUM:&tbnh=137&tbnw=97&ei=musDSItThbp6sfXZIg&prev=/images%3Fq%3Dhard%2Bdrive%26start%3D20%26gbv%3D2%26ndsp%3D20%26hl%3Den%26sa%3DN

58

Widening Processor/Memory Gap

Gap in speed increasing from 1986 to 2000

CPU speed improved ~55% per year

Main memory speed improved only ~10% per year

Main memory as major performance bottleneck

Many programs stall waiting for reads and writes to finish

Changes in the memory hierarchy

Increasing the number of registers

8 integer registers in the x86 vs 16 in x86_64

Adding caches between registers and main memory

Level-1, -2, -3 cache on chip

59

An Example Memory Hierarchy

registers

L1
cache (SRAM)

main memory
(DRAM)

local secondary storage
(local disks)

Larger,
slower,

and
cheaper
(per byte)
storage
devices

remote secondary storage
(tapes, distributed file systems, Web servers)

Local disks hold files
retrieved from disks on
remote network servers

Main memory holds disk
blocks retrieved from local

disks

L2, L3 (shared)
cache (SRAM)

L1 cache holds cache lines retrieved
from the L2 cache memory

CPU registers hold words retrieved from
L1 cache

L2 cache holds cache lines
retrieved from main memory

L3 cache is typically shared across
CPU cores

L0:

L1:

L2:

L3:

L4:

L5:

Smaller,
faster,
and

costlier
(per byte)
storage
devices

60

Locality of Reference

Two kinds of locality

Temporal locality: recently referenced items are likely to be referenced in

near future

Spatial locality: items with nearby addresses tend to be referenced close

together in time

61

Locality of Reference

Two kinds of locality

Temporal locality: recently referenced items are likely to be referenced in

near future

Spatial locality: items with nearby addresses tend to be referenced close

together in time

Locality example
sum = 0;
for (i = 0; i < n; i++)

sum += a[i];
return sum;

62

Locality of Reference

Two kinds of locality

Temporal locality: recently referenced items are likely to be referenced in

near future

Spatial locality: items with nearby addresses tend to be referenced close

together in time

Locality example

Program data

Temporal: the variable sum

Spatial: variable a[i+1] accessed soon after a[i]

sum = 0;
for (i = 0; i < n; i++)

sum += a[i];
return sum;

63

Locality of Reference

Two kinds of locality

Temporal locality: recently referenced items are likely to be referenced in

near future

Spatial locality: items with nearby addresses tend to be referenced close

together in time

Locality example

Program data

Temporal: the variable sum

Spatial: variable a[i+1] accessed soon after a[i]

Instructions

Temporal: cycle through the for-loop repeatedly

Spatial: reference instructions in sequence

sum = 0;
for (i = 0; i < n; i++)

sum += a[i];
return sum;

64

Locality Makes Caching Effective

Cache

Smaller and faster storage device that acts as a staging area

… for a subset of the data in a larger, slower device

Caching and the memory hierarchy

Storage device at level k is a cache for level k+1

Registers as cache of L1/L2 cache and main memory

Main memory as a cache for the disk

Disk as a cache of files from remote storage

Locality of access is the key

Most accesses satisfied by first few (faster) levels

Very few accesses go to the last few (slower) levels

65

Cache Hit and Miss

Cache hit

Program accesses a block

available in the cache

Satisfy directly from cache

e.g., request for “10”

Cache miss

Program accesses a block not

available in the cache

Bring item into the cache

e.g., request for “13”

Where to place the item?

Which item to evict?

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

8 9 14 3

Level k:

Level k+1:

4

4 10

10

66

Automatic Allocation: Virtual Memory

Give programmer the illusion of a very large memory

Large: 4 GB of memory with 32-bit addresses

Uniform: contiguous memory locations, from 0 to 2 32-1

Independent of

the actual size of the main memory

the presence of any other processes sharing the computer

Key idea #1: separate “address” from “physical location”
Virtual addresses: generated by the program

Memory locations: determined by the hardware and OS

Key idea #2: caching

Swap virtual pages between main memory and the disk

One of the best ideas in computer systems!

67

Private Address Space: Illusion

Process 1 Process 2

Memory
for

Process
1

00000000

FFFFFFFF

Memory
for

Process
2

00000000

FFFFFFFF

Hardware and OS give each application process
the illusion that it is the only process using memory

68

Private Address Space: Reality

Process 1 VM Process 2 VM
00000000

FFFFFFFF

00000000

FFFFFFFF

All processes use the same real memory
Hardware and OS provide application programs with a virtual view of
memory, i.e. virtual memory (VM)

unused

unused

Real Memory

DiskMemory is divided
into pages

69

Making Good Use of Memory and Disk

Good use of the disk

Read and write data in large “pages”

… to amortize the cost of “seeking” on the disk

e.g., page size of 4 KB

Good use of main memory

Although the address space is large

… programs usually access only small portions at a time

Keep the “working set” in main memory

Demand paging: only bring in a page when needed

Page replacement: selecting good page to swap out

Goal: avoid thrashing

Continually swapping between memory and disk

70

Virtual Address for a Process

Virtual page number

Number of the page in the virtual address space

Extracted from the upper bits of the (virtual) address

… and then mapped to a physical page number

Offset in a page

Number of the byte within the page

Extracted from the lower bits of the (virtual) address

… and then used as offset from start of physical page

Example: 4 KB pages

20-bit page number: 220 virtual pages

12-bit offset: bytes 0 to 212-1

71

Virtual Address for a Process

Virtual Address Space Physical Address Space

virtual
page number

offset in page
physical

page number

offset in page

Translate virtual page number
to physical page number

32-bit address

72

Page Table to Manage the Cache
Current location of each virtual page

Physical page number, or

Disk address (or null if unallocated)

Example

Page 0: at location xx on disk

Page 1: at physical page 2

Page 3: not yet allocated

Page “hit” handled by hardware

Compute the physical address

Map virtual page # to physical page #

Concatenate with offset in page

Read or write from main memory

Using the physical address

Page “miss” triggers an exception…

4

3

1

0

2

10

27

1

4

virtual
pages

physical
pages

…

73

“Miss” Triggers Page Fault

Accessing the page not in main memory

V Physical or
disk address

0 xx

1 2

0 yy

0 null

1 1

…

0
1
2
3
4

4

3

1

0

2

10

27

1

4

virtual
pages

physical
pages

…

74

“Miss” Triggers Page Fault

Accessing the page not in main memory

4

3

1

0

2

10

27

1

4

virtual
pages

physical
pages

…

V Physical or
disk address

0 xx

1 2

0 yy

0 null

1 1

…

0
1
2
3
4

movl 00002104, %eax

Virtual page #2 at location yy on disk!

75

OS Handles the Page Fault

Bringing page in from the disk

If needed, swap out old page (e.g., #4)

Bring in the new page (page #2)

Update the page table entries

4

3

1

0

2

10

27

1

4

virtual
pages

physical
pages

…

V Physical or
disk address

0 xx

1 2

0 yy

0 null

1 1

…

0
1
2
3
4

76

OS Handles the Page Fault

Bringing page in from the disk

If needed, swap out old page (e.g., #4)

Bring in the new page (page #2)

Update the page table entries

4

3

1

0

2

10

27

1

4

virtual
pages

physical
pages

…

V Physical or
disk address

0 xx

1 2

0 yy

0 null

1 1

…

0
1
2
3
4

77

OS Handles the Page Fault

Bringing page in from the disk

If needed, swap out old page (e.g., #4)

Bring in the new page (page #2)

Update the page table entries

4

3

1

0

2

10

27

1

4

virtual
pages

physical
pages

…

V Physical or
disk address

0 xx

1 2

0 yy

0 null

1 1

…

0
1
2
3
4 0 zz

78

OS Handles the Page Fault

Bringing page in from the disk

If needed, swap out old page (e.g., #4)

Bring in the new page (page #2)

Update the page table entries

4

3

1

0

2

10

27

1

2

virtual
pages

physical
pages

…

V Physical or
disk address

0 xx

1 2

0 yy

0 null

1 1

…

0
1
2
3
4 0 zz

1 1

79

VM as a Tool for Memory Protection

Memory protection

Prevent processes from unauthorized reading or writing of memory

User process should not be able to

Modify the read-only text section in its own address space

Read or write operating-system code and data structures

Read or write the private memory of other processes

Hardware support

Permission bits in page-table entries (e.g., read-only)

Separate identifier for each process (i.e., process-ID)

Switching between unprivileged mode (for user processes) and privileged mode (for

the operating system)

81

Example: Opening a File

FILE *fopen("myfile.txt", "r")

Opens the named file and return a stream

Includes a mode, such as “r” for read or “w” for write

Creates a FILE data structure for the file

Mode, status, buffer, …

Assigns fields and returns a pointer

Opens or creates the file, based on the mode

Write (‘w’): create the file with default permissions

Read (‘r’): open the file as read-only

Append (‘a’): open or create file, and seek to the end

82

Example: Formatted I/O

int fprintf(fp1, "Number: %d\n", i)

Convert and write output to stream in specified format

int fscanf(fp1, "FooBar: %d", &i)

Read from stream in format and assign converted values

Specialized versions

printf(…) is just fprintf(stdout, …)

scanf(…) is just fscanf(stdin, …)

<stdio.h> has a variable FILE* stdin;

83

Layers of Abstraction

Disk

Driver

Storage

File System

disk blocks

variable-length segments

hierarchical file system

Operating
System

Stdio Library
FILE * stream

App PrgmUser
process

int fd

File descriptor:
An integer that
uniquely identifies
an open file

84

System-Level Functions for I/O

int creat(char *pathname, mode_t mode);

Creates a new file named pathname, and returns a file descriptor

int open(char *pathname, int flags, mode_t mode);

Opens the file pathname and returns a file descriptor

int close(int fd);

Closes fd

int read(int fd, void *buf, int count);

Reads up to count bytes from fd into the buffer at buf

int write(int fd, void *buf, int count);

Writes up to count bytes into fd from the buffer at buf

int lseek(int fd, int offset, int whence);

Assigns the file pointer of fd to a new value by applying an offset

85

Example: open()

Converts a path name into a file descriptor

int open(const char *pathname, int flags, mode_t mode);

Arguments

pathname: name of the file

flags: bit flags for O_RDONLY, O_WRONLY, O_RDWR

mode: permissions to set if file must be created

Returns

File descriptor (or -1 if error)

Performs a variety of checks

e.g., whether the process is entitled to access the file

Underlies fopen()

86

Example: read()

Reads bytes from a file descriptor

int read(int fd, void *buf, int count);

Arguments

File descriptor: integer descriptor returned by open()

Buffer: pointer to memory to store the bytes it reads

Count: maximum number of bytes to read

Returns

Number of bytes read

Value of 0 if nothing more to read

Value of -1 if an error

Performs a variety of checks

Whether file has been opened, whether reading is okay

Underlies getchar(), fgets(), scanf(), etc.

88

Creating a New Process

Cloning an existing process

Parent process creates a new child process

The two processes then run concurrently

Child process inherits state from parent

Identical (but separate) copy of virtual

address space

Copy of the parent’s open file descriptors

Parent and child share access to open files

Child then runs independently

Executing independently, including invoking a

new program

Reading and writing its own address space

parent

child

89

Fork System-Level Function

fork() is called once

but returns twice, once in each process

because a new process is created, as a result of fork()

1+1 = 2

Telling which process is which

Parent: fork() returns the child’s process ID

Child: fork() returns 0

pid = fork();
if (pid != 0) {

/* in parent */
…

} else {
/* in child */
…

}

90

Executing a New Program

fork() copies the state of the parent process

Child continues running the parent program

… with a copy of the process memory and registers

Need a way to invoke a new program

In the context of the newly-created child process

Example

execvp("ls", argv);
fprintf(stderr, "exec failed\n");
exit(EXIT_FAILURE);

program
NULL-terminated array

Contains command-line arguments
(to become “argv[]” of ls)

91

Waiting for the Child to Finish

Parent should wait for children to finish

Example: a shell waiting for operations to complete

Waiting for a child to terminate: wait()

Blocks until some child terminates

Returns the process ID of the child process

Or returns -1 if no children exist (i.e., already exited)

Waiting for specific child to terminate: waitpid()

Blocks till a child with particular process ID terminates

#include <sys/types.h>
#include <sys/wait.h>
pid_t wait(int *status);
pid_t waitpid(pid_t pid, int *status, int options);

	EE309�Lecture 2: EE209/EE485 Review
	Lecture 1. Introduction
	What does a computer look like today?
	Trend#1: Smaller and more powerful
	Trend#2: Ubiquitous, everywhere
	Trend#3: Growing to a larger scale
	Google’s Datacenters
	Internet-based Services
	Endless applications using cloud
	Understanding Computer Systems and Software
	Design goals of C
	Hello World
	C Variable Types
	Constants, Array, Pointer Type
	Variables and Pointers
	Strings and Structures
	Arithmetic and Logic Operations
	Statements
	Loop Statements (1)
	Loop Statements (2)
	Loop Statements (3)
	Function Definition and Call
	Other Statements
	Lecture 4: Compiler
	Building a C Program
	Shortcut of All Processes
	Lecture 5: Debuggers
	Typical Steps for Debugging with GDB
	Typical Steps for Debugging with GDB (cont.)
	Typical Steps for Debugging with GDB (cont.)
	Other Useful Tips
	Lecture 16: Exceptions and Processes
	Context of this Lecture
	Exceptions
	Exceptional Control Flow
	Classes of Exceptions
	(1) Interrupts
	(2) Traps
	(3) Faults
	(4) Aborts
	Traps in Intel Processors
	System-Level Functions
	Processes
	Processes
	Processes
	Significance of Processes
	Private Control Flow: Illusion
	Private Control Flow: Reality
	Context Switches
	Context Details
	Context Switch Details
	When Should OS Do Context Switch?
	When Should OS Do Context Switch?
	Life Cycle of a Process
	Lecture 17:�Memory Management
	Motivation for Memory Hierarchy
	Simple Three-Level Hierarchy
	Widening Processor/Memory Gap
	An Example Memory Hierarchy
	Locality of Reference
	Locality of Reference
	Locality of Reference
	Locality of Reference
	Locality Makes Caching Effective
	Cache Hit and Miss
	Automatic Allocation: Virtual Memory
	Private Address Space: Illusion
	Private Address Space: Reality
	Making Good Use of Memory and Disk
	Virtual Address for a Process
	Virtual Address for a Process
	Page Table to Manage the Cache
	“Miss” Triggers Page Fault
	“Miss” Triggers Page Fault
	OS Handles the Page Fault
	OS Handles the Page Fault
	OS Handles the Page Fault
	OS Handles the Page Fault
	VM as a Tool for Memory Protection
	EE209 #19:�I/O Management
	Example: Opening a File
	Example: Formatted I/O
	Layers of Abstraction
	System-Level Functions for I/O
	Example: open()
	Example: read()
	EE209 #20:�Process Management
	Creating a New Process
	Fork System-Level Function
	Executing a New Program
	Waiting for the Child to Finish

