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Today’s lecture

• Understand FILE I/O in advance!



File descriptors

• To the kernel, all open files are referred to by file descriptors
• A file descriptor is a non-negative integer that is created 

• When we open an existing file or 
• When we create a new file

• When we want to read or write a file, we identify the file with 
the file descriptor 



Standard in/out/error

• By convention, UNIX system shells associate file descriptors 
• 0: Standard input (stdin)
• 1: Standard output (stdout)
• 2: Standard error (stderr)



System-Level Functions for I/O

int open(char *pathname, int flags, mode_t mode);
• Opens the file pathname and returns a file descriptor

int close(int fd);
• Closes fd

int read(int fd, void *buf, int count);
• Reads up to count bytes from fd into the buffer at buf

int write(int fd, void *buf, int count);
• Writes up to count bytes into fd from the buffer at buf

int lseek(int fd, int offset, int whence);
• Assigns the file pointer of fd to a new value by applying an offset



open()

• Converts a path name into a file descriptor
• int open(const char *pathname, int flags, mode_t mode);

• Arguments
• pathname: name of the file
• flags: bit flags for O_RDONLY, O_WRONLY, O_RDWR
• mode: permissions to set if file must be created

• Returns
• File descriptor (or -1 if error)

• Performs a variety of checks
• e.g., whether the process is entitled to access the file (Later in details)



close()

• Close a file
• int close(int fd);

• Arguments
• fd: A file descriptor to close
• flags: bit flags for O_RDONLY, O_WRONLY, O_RDWR
• mode: permissions to set if file must be created

• Returns
• 0 if OK, -1 on error

• NOTE: When a process terminates, all of its open files are closed 
automatically by the kernel

• But please try to do it explicitly for efficient resource management



read()

• Reads bytes from a file descriptor
• int read(int fd, void *buf, int count);

• Arguments
• File descriptor: integer descriptor returned by open()
• Buffer: pointer to memory to store the bytes it reads
• Count: maximum number of bytes to read

• Returns
• Number of bytes read

• Value of 0 if nothing more to read
• Value of -1 if an error

• Performs a variety of checks
• Whether file has been opened, whether reading is okay



write()

• Writes bytes from a file descriptor
• int write(int fd, void *buf, int count);

• Arguments
• File descriptor: integer descriptor returned by open()
• Buffer: pointer to memory to write the bytes
• Count: maximum number of bytes to write

• Returns
• Number of bytes write

• Usually equal to count
• Value of -1 if an error

• Performs a variety of checks
• Whether file has been opened, whether writing is okay



lseek()

• Assigns the file pointer of fd to a new value by applying an offset
• int lseek(int fd, off_t offset, int whence);

• Arguments
• File descriptor: integer descriptor returned by open()
• If whence is SEEK_SET, the file’s offset is set to offset bytes from the beginning of the file
• If whence is SEEK_CUR, the file’s offset is set to its current value plus the offset 
• If whence is SEEK_END, the file’s offset is set to the size of the file plus the offset

• Returns
• The current new file offset

// Get the current offset
off_t currpos;
currpos = lseek(fd, 0, SEEK_CUR);



I/O Efficiency

• Reads from standard input and writes 
to standard output 

• The program doesn’t close the input 
file or output file

• Instead, the program uses the feature of 
the UNIX kernel that closes all open file 
descriptors in a process when that 
process terminates





File sharing

• UNIX system supports the sharing of open files among 
different processes

int fd1 = open("./hello.txt", O_RDONLY);
int fd2 = open("./hello.txt", O_WRONLY);



Data structures to represent open files

• Process table entry for every process
• The file descriptor flags
• A pointer to file table entry

• A file table for all open files
• The file status flags (e.g., read, write, append, …)
• The current file offset 
• A pointer to the v-node table entry for the file

• Each open file has a v-node structure
• Type of file (e.g., a normal file, a directory, a device, …)
• Pointers to functions that operate on the file
• Pointer to i-node: the owner of the file, the size of file, data blocks, …



• NOTE: Linux has no v-node, but it has a generic i-node 
structure. Conceptually, this is same with v-node.





#include <fcntl.h>
#include <stdio.h>
#include <unistd.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <sys/wait.h>

#define MSG "Hello World"

int main() {
// Assume hello.txt is an empty file
char buf[sizeof(MSG)] = {};
int status = 0;
int fd1 = open("hello.txt", O_RDONLY);

if (fork() == 0) {
// child
int fd2 = open("hello.txt", O_WRONLY);
write(fd2, "Hello World", sizeof(MSG));
return 0;

}

wait(&status);
read(fd1, buf, sizeof(buf));
printf("%s\n", buf);

}

$ cat hello.txt
$ ./sharing1
Hello World



int main() {
// Assume hello.txt = "Hello World"
char buf[sizeof(MSG)] = {};
int status = 0;
int fd1 = open("hello.txt", O_RDONLY);

if (fork() == 0) {
// child
int fd2 = open("hello.txt", O_RDONLY);
read(fd2, buf, sizeof(buf));
return 0;

}

wait(&status);
read(fd1, buf, sizeof(buf));
printf("%s\n", buf);

}

$ cat hello.txt
Hello World
$ ./sharing2
Hello World



dup()

• Duplicate existing file descriptor 
• int dup(int oldfd);

• Arguments
• oldfd : A file descriptor to duplicate

• Returns
• New file descriptor if OK, -1 on error

• There is another version, dup2(int oldfd, int newfd)
• This allows us to specify the new file descriptor to use





$ cat hello.txt
Hello World
$ ./sharing3

#define MSG "Hello World"

int main() {
// Assume hello.txt = "Hello World"
char buf[sizeof(MSG)] = {};
int status = 0;
int fd1 = open("hello.txt", O_RDONLY);

if (fork() == 0) {
// child
// int fd2 = open("hello.txt", O_RDONLY);
int fd2 = dup(fd1);
read(fd2, buf, sizeof(buf));
return 0;

}

wait(&status);
read(fd1, buf, sizeof(buf));
printf("%s\n", buf);

}



Atomic operation

• atomic operation refers to an operation that might be 
composed of multiple steps. 

• If the operation is performed atomically, either all the steps are 
performed (on success) or none are performed (on failure). 

• It must not be possible for only a subset of the steps to be 
performed. 

• If we deal with files that can be shared by multiple threads, 
we should be aware of such atomic operations



Atomic Operation (1): Append a file

• Older versions of the UNIX System didn’t support 
the O_APPEND option if a single process wants to append to 
the end of a file 

• The program would be:

• Single-process  fine
• But what if there are multiple processes and they are trying to touch 

the same file? 
• Thus, O_APPEND is introduced!



Atomic Operation (2): pread( ) and pwrite( )

• The Single UNIX Specification includes two functions that allow 
applications to seek and perform I/O atomically:

• pread: equivalent to calling lseek followed by a call to read, with the following 
exceptions:

• There is no way to interrupt the two operations that occur calling pread.
• The current file offset is not updated.

• pwrite: equivalent to calling lseek followed by a call to write, with similar 
exceptions to pread



Atomic Operation (3) Creating a file

• When both of O_CREAT and O_EXCL options are specified, 
the open will fail if the file already exists. 

• The check for the existence of the file and the creation of the file 
was performed as an atomic operation.

• Non-atomic operation
• If we didn’t have this atomic operation, we might try:



Atomic Operation (3) Creating a file

• The problem occurs if the file is created by another process 
between the open and the creat() 

• If the file is created by another process between these two 
function calls, and if that other process writes something to 
the file, that data is erased when this creat( ) is executed.

• Combining the test for existence and the creation into a 
single atomic operation avoids this problem. 



sync, fsync, and fdatasync

• Traditional implementations of the UNIX System have a buffer cache or 
page cache in the kernel through which most disk I/O passes.

• Delayed write
• when we write data to a file, the data is normally copied by the kernel into one of 

its buffers and queued for writing to disk at some later time

• The kernel eventually writes all the delayed-write blocks to disk, 
normally when it needs to reuse the buffer for some other disk block. 

• To ensure consistency of the file system on disk with the contents of 
the buffer cache, the sync, fsync, and fdatasync functions are provided.



sync, fsync, and fdatasync

• sync( ) 
• queues all the modified block buffers for writing and returns. It does not 

wait for the disk writes to take place
• sync is normally called periodically (usually every 30 seconds) from a 

system daemon, often called update, which guarantees regular flushing of 
the kernel’s block buffers. 

• fsync( )
• applies to a single file specified by the file descriptor fd, and waits for the 

disk writes to complete before returning.
• fsync also updates the file's attributes synchronously

• fdatasync( )
• similar to fsync, but it affects only the data portions of a file



fflush() and fsync( )

• fflush() works on FILE*, 
• flushes the internal buffers in the FILE* of your application out to the OS.

• fsync works on a lower level, 
• tells the OS to flush its buffers to the physical media.

• Call fflush() may also invoke fsync(), but no guarantee



fcntl( )

• The fcntl function is used for five different purposes:
• Duplicate an existing descriptor (cmd = F_DUPFD or F_DUPFD_CLOEXEC)
• Get/set file descriptor flags (cmd = F_GETFD or F_SETFD)
• Get/set file status flags (cmd = F_GETFL or F_SETFL)
• Get/set asynchronous I/O ownership (cmd = F_GETOWN or F_SETOWN)
• Get/set record locks (cmd = F_GETLK, F_SETLK, or F_SETLKW)



File flags - (will be discussed later)
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