
EE309
Lecture 4: File I/O

INSU YUN (윤인수)

School of Electrical Engineering, KAIST

Today’s lecture

• Understand FILE I/O in advance!

File descriptors

• To the kernel, all open files are referred to by file descriptors
• A file descriptor is a non-negative integer that is created

• When we open an existing file or
• When we create a new file

• When we want to read or write a file, we identify the file with
the file descriptor

Standard in/out/error

• By convention, UNIX system shells associate file descriptors
• 0: Standard input (stdin)
• 1: Standard output (stdout)
• 2: Standard error (stderr)

System-Level Functions for I/O

int open(char *pathname, int flags, mode_t mode);
• Opens the file pathname and returns a file descriptor

int close(int fd);
• Closes fd

int read(int fd, void *buf, int count);
• Reads up to count bytes from fd into the buffer at buf

int write(int fd, void *buf, int count);
• Writes up to count bytes into fd from the buffer at buf

int lseek(int fd, int offset, int whence);
• Assigns the file pointer of fd to a new value by applying an offset

open()

• Converts a path name into a file descriptor
• int open(const char *pathname, int flags, mode_t mode);

• Arguments
• pathname: name of the file
• flags: bit flags for O_RDONLY, O_WRONLY, O_RDWR
• mode: permissions to set if file must be created

• Returns
• File descriptor (or -1 if error)

• Performs a variety of checks
• e.g., whether the process is entitled to access the file (Later in details)

close()

• Close a file
• int close(int fd);

• Arguments
• fd: A file descriptor to close
• flags: bit flags for O_RDONLY, O_WRONLY, O_RDWR
• mode: permissions to set if file must be created

• Returns
• 0 if OK, -1 on error

• NOTE: When a process terminates, all of its open files are closed
automatically by the kernel

• But please try to do it explicitly for efficient resource management

read()

• Reads bytes from a file descriptor
• int read(int fd, void *buf, int count);

• Arguments
• File descriptor: integer descriptor returned by open()
• Buffer: pointer to memory to store the bytes it reads
• Count: maximum number of bytes to read

• Returns
• Number of bytes read

• Value of 0 if nothing more to read
• Value of -1 if an error

• Performs a variety of checks
• Whether file has been opened, whether reading is okay

write()

• Writes bytes from a file descriptor
• int write(int fd, void *buf, int count);

• Arguments
• File descriptor: integer descriptor returned by open()
• Buffer: pointer to memory to write the bytes
• Count: maximum number of bytes to write

• Returns
• Number of bytes write

• Usually equal to count
• Value of -1 if an error

• Performs a variety of checks
• Whether file has been opened, whether writing is okay

lseek()

• Assigns the file pointer of fd to a new value by applying an offset
• int lseek(int fd, off_t offset, int whence);

• Arguments
• File descriptor: integer descriptor returned by open()
• If whence is SEEK_SET, the file’s offset is set to offset bytes from the beginning of the file
• If whence is SEEK_CUR, the file’s offset is set to its current value plus the offset
• If whence is SEEK_END, the file’s offset is set to the size of the file plus the offset

• Returns
• The current new file offset

// Get the current offset
off_t currpos;
currpos = lseek(fd, 0, SEEK_CUR);

I/O Efficiency

• Reads from standard input and writes
to standard output

• The program doesn’t close the input
file or output file

• Instead, the program uses the feature of
the UNIX kernel that closes all open file
descriptors in a process when that
process terminates

File sharing

• UNIX system supports the sharing of open files among
different processes

int fd1 = open("./hello.txt", O_RDONLY);
int fd2 = open("./hello.txt", O_WRONLY);

Data structures to represent open files

• Process table entry for every process
• The file descriptor flags
• A pointer to file table entry

• A file table for all open files
• The file status flags (e.g., read, write, append, …)
• The current file offset
• A pointer to the v-node table entry for the file

• Each open file has a v-node structure
• Type of file (e.g., a normal file, a directory, a device, …)
• Pointers to functions that operate on the file
• Pointer to i-node: the owner of the file, the size of file, data blocks, …

• NOTE: Linux has no v-node, but it has a generic i-node
structure. Conceptually, this is same with v-node.

#include <fcntl.h>
#include <stdio.h>
#include <unistd.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <sys/wait.h>

#define MSG "Hello World"

int main() {
// Assume hello.txt is an empty file
char buf[sizeof(MSG)] = {};
int status = 0;
int fd1 = open("hello.txt", O_RDONLY);

if (fork() == 0) {
// child
int fd2 = open("hello.txt", O_WRONLY);
write(fd2, "Hello World", sizeof(MSG));
return 0;

}

wait(&status);
read(fd1, buf, sizeof(buf));
printf("%s\n", buf);

}

$ cat hello.txt
$./sharing1
Hello World

int main() {
// Assume hello.txt = "Hello World"
char buf[sizeof(MSG)] = {};
int status = 0;
int fd1 = open("hello.txt", O_RDONLY);

if (fork() == 0) {
// child
int fd2 = open("hello.txt", O_RDONLY);
read(fd2, buf, sizeof(buf));
return 0;

}

wait(&status);
read(fd1, buf, sizeof(buf));
printf("%s\n", buf);

}

$ cat hello.txt
Hello World
$./sharing2
Hello World

dup()

• Duplicate existing file descriptor
• int dup(int oldfd);

• Arguments
• oldfd : A file descriptor to duplicate

• Returns
• New file descriptor if OK, -1 on error

• There is another version, dup2(int oldfd, int newfd)
• This allows us to specify the new file descriptor to use

$ cat hello.txt
Hello World
$./sharing3

#define MSG "Hello World"

int main() {
// Assume hello.txt = "Hello World"
char buf[sizeof(MSG)] = {};
int status = 0;
int fd1 = open("hello.txt", O_RDONLY);

if (fork() == 0) {
// child
// int fd2 = open("hello.txt", O_RDONLY);
int fd2 = dup(fd1);
read(fd2, buf, sizeof(buf));
return 0;

}

wait(&status);
read(fd1, buf, sizeof(buf));
printf("%s\n", buf);

}

Atomic operation

• atomic operation refers to an operation that might be
composed of multiple steps.

• If the operation is performed atomically, either all the steps are
performed (on success) or none are performed (on failure).

• It must not be possible for only a subset of the steps to be
performed.

• If we deal with files that can be shared by multiple threads,
we should be aware of such atomic operations

Atomic Operation (1): Append a file

• Older versions of the UNIX System didn’t support
the O_APPEND option if a single process wants to append to
the end of a file

• The program would be:

• Single-process fine
• But what if there are multiple processes and they are trying to touch

the same file?
• Thus, O_APPEND is introduced!

Atomic Operation (2): pread() and pwrite()

• The Single UNIX Specification includes two functions that allow
applications to seek and perform I/O atomically:

• pread: equivalent to calling lseek followed by a call to read, with the following
exceptions:

• There is no way to interrupt the two operations that occur calling pread.
• The current file offset is not updated.

• pwrite: equivalent to calling lseek followed by a call to write, with similar
exceptions to pread

Atomic Operation (3) Creating a file

• When both of O_CREAT and O_EXCL options are specified,
the open will fail if the file already exists.

• The check for the existence of the file and the creation of the file
was performed as an atomic operation.

• Non-atomic operation
• If we didn’t have this atomic operation, we might try:

Atomic Operation (3) Creating a file

• The problem occurs if the file is created by another process
between the open and the creat()

• If the file is created by another process between these two
function calls, and if that other process writes something to
the file, that data is erased when this creat() is executed.

• Combining the test for existence and the creation into a
single atomic operation avoids this problem.

sync, fsync, and fdatasync

• Traditional implementations of the UNIX System have a buffer cache or
page cache in the kernel through which most disk I/O passes.

• Delayed write
• when we write data to a file, the data is normally copied by the kernel into one of

its buffers and queued for writing to disk at some later time

• The kernel eventually writes all the delayed-write blocks to disk,
normally when it needs to reuse the buffer for some other disk block.

• To ensure consistency of the file system on disk with the contents of
the buffer cache, the sync, fsync, and fdatasync functions are provided.

sync, fsync, and fdatasync

• sync()
• queues all the modified block buffers for writing and returns. It does not

wait for the disk writes to take place
• sync is normally called periodically (usually every 30 seconds) from a

system daemon, often called update, which guarantees regular flushing of
the kernel’s block buffers.

• fsync()
• applies to a single file specified by the file descriptor fd, and waits for the

disk writes to complete before returning.
• fsync also updates the file's attributes synchronously

• fdatasync()
• similar to fsync, but it affects only the data portions of a file

fflush() and fsync()

• fflush() works on FILE*,
• flushes the internal buffers in the FILE* of your application out to the OS.

• fsync works on a lower level,
• tells the OS to flush its buffers to the physical media.

• Call fflush() may also invoke fsync(), but no guarantee

fcntl()

• The fcntl function is used for five different purposes:
• Duplicate an existing descriptor (cmd = F_DUPFD or F_DUPFD_CLOEXEC)
• Get/set file descriptor flags (cmd = F_GETFD or F_SETFD)
• Get/set file status flags (cmd = F_GETFL or F_SETFL)
• Get/set asynchronous I/O ownership (cmd = F_GETOWN or F_SETOWN)
• Get/set record locks (cmd = F_GETLK, F_SETLK, or F_SETLKW)

File flags - (will be discussed later)

	EE309�Lecture 4: File I/O
	Today’s lecture
	File descriptors
	Standard in/out/error
	System-Level Functions for I/O
	open()
	close()
	read()
	write()
	lseek()
	I/O Efficiency
	슬라이드 번호 12
	File sharing
	Data structures to represent open files
	슬라이드 번호 15
	슬라이드 번호 16
	슬라이드 번호 17
	슬라이드 번호 18
	dup()
	슬라이드 번호 20
	슬라이드 번호 21
	Atomic operation
	Atomic Operation (1): Append a file
	Atomic Operation (2): pread() and pwrite()
	Atomic Operation (3) Creating a file
	Atomic Operation (3) Creating a file
	sync, fsync, and fdatasync
	sync, fsync, and fdatasync
	fflush() and fsync()
	fcntl()
	File flags - (will be discussed later)

