
EE309 Advanced Programming
Techniques for EE

Lecture 5: Files and Directories
INSU YUN (윤인수)

School of Electrical Engineering, KAIST

[Lecture Slides Based on Prof. Shin SEUNGWON 2020]

Today’s lecture

• Learn APIs for files and directories

stat(), lstat()

• Returns a structure of information about the named file

• lstat() vs stat(): Returns information about the symbolic
link, not the file referenced by the symbolic link

• Explain the symbolic link later

#include <sys/stat.h>

int stat(const char *restrict pathname, struct stat *restrict buf);
int lstat(const char *restrict pathname, struct stat *restrict buf);

All return: 0 if OK, 1 on error

struct stat {
mode_t st_mode; /* file type & mode (permissions) */
ino_t st_ino; /* i-node number (serial number) */
dev_t st_dev; /* device number (file system) */
dev_t st_rdev; /* device number for special files */
nlink_t st_nlink; /* number of links */
uid_t st_uid; /* user ID of owner */
gid_t st_gid; /* group ID of owner */
off_t st_size; /* size in bytes, for regular files */
time_t st_atime; /* time of last access */
time_t st_mtime; /* time of last modification */
time_t st_ctime; /* time of last file status change */
blksize_t st_blksize; /* best I/O block size */
blkcnt_t st_blocks; /* number of disk blocks allocated */

};

File types

• We've talked about two different types of files so far: regular files
and directories.

• Most files on a UNIX system are either regular files or directories,
but there are additional types of files. The types are:

• Regular file
• Directory file
• Socket: A type of file used for network communication between processes.

A socket can also be used for non-network communication between
processes on a single host.

• Symbolic link. A type of file that points to another file (Later)
• …

Example
int main(int argc, char *argv[]) {

int i;
struct stat buf;
char *ptr;

for (i = 1; i < argc; i++) {
printf("%s: ", argv[i]);
if (lstat(argv[i], &buf) < 0) {

perror("lstat error");
continue;

}
if (S_ISREG(buf.st_mode))

ptr = "regular";
else if (S_ISDIR(buf.st_mode))

ptr = "directory";
else if (S_ISLNK(buf.st_mode))

ptr = "symbolic link";
else if (S_ISSOCK(buf.st_mode))

ptr = "socket";
else

ptr = "** unknown mode **";
printf("%s\n", ptr);

}
}

$ sudo ./lstat /etc/passwd \
/etc \
/var/run/mysqld/mysqld.sock \
/dev/stdin

/etc/passwd: regular
/etc: directory
/var/run/mysqld/mysqld.sock: socket
/dev/stdin: symbolic link

Q: What happens if I
change lstat to stat?

Macro Type of file

S_ISREG() regular file

S_ISDIR() directory file

S_ISLNK() symbolic link

S_ISSOCK() socket

… …

Access control

• The UNIX filesystem implements discretionary access control
through file permissions set by user

• The permissions are set at the discretion of the user

• Every file in the file system has a set of bits which determine who
has assess to the file

• User: the owner is typically the creator of the file, and the entity in control
of the access control policy

• Group: a set of users on the system setup by the admin
• Other: the set of everyone on the system

• Note: this can be overridden by the “root” user

Unix/Linux file system permissions

• There are three permissions in the UNIX filesystem
• READ: allows the subject (process) to read the contents of the file
• WRITE: allows the subject (process) to alter the contents of the file
• EXECUTE: allows the subject (process) to execute the contents of the

file (e.g., shell program, executable)

• For directory
• READ: allows the subject (process) to list the files in the directory
• WRITE: allows the subject (process) to write (e.g., create, rename,

delete, modify) files in the directory
• EXECUTE: allows the subject (process) to access files in the directory

• e.g., to create (or delete) a file, you also need executable permission

Unix/Linux Access Policy

• Really, this is a bit string encoding an access policy:
rwx rwx rwx

• And a policy is encoded as “r”, “w”, “x” if enabled, and “-” if not,
e.g.,

rwxrw---x

• Says user can read, write and execute, group can read and write,
and world can execute only

Other

Group

Owner

$ ls -l .
total 28
-rw-r--r-- 1 insu insu 0 Aug 14 20:20 fopen.dat
-rwxr-xr-x 1 insu insu 16464 Aug 14 20:20 hello
-rw-r--r-- 1 insu insu 16 Aug 14 20:20 hello.c
-rwxr-xr-x 1 insu insu 12 Aug 14 20:20 hello.sh

The nine file access permission bits,
from <sys/stat.h>

st_mode mask Meaning

S_IRUSR user-read

S_IWUSR user-write

S_IXUSR user-execute

S_IRGRP group-read

S_IWGRP group-write

S_IXGRP group-execute

S_IROTH other-read

S_IWOTH other-write

S_IXOTH other-execute

$ sudo ./permission /etc/passwd \
/etc \
/var/run/mysqld/mysqld.sock \
/dev/stdin

/etc/passwd: rw-r--r--
/etc: rwxr-xr-x
/var/run/mysqld/mysqld.sock: rwxrwxrwx
/dev/stdin: rwxrwxrwx

int main(int argc, char *argv[]) {
int i;
struct stat buf;
char *ptr;

for (i = 1; i < argc; i++) {
printf("%s: ", argv[i]);
if (lstat(argv[i], &buf) < 0) {
perror("lstat error");
continue;

}

char str[] = "---------";
mode_t mode = buf.st_mode;

if (mode & S_IRUSR) str[0] = 'r';
if (mode & S_IWUSR) str[1] = 'w';
if (mode & S_IXUSR) str[2] = 'x';

if (mode & S_IRGRP) str[3] = 'r';
if (mode & S_IWGRP) str[4] = 'w';
if (mode & S_IXGRP) str[5] = 'x';

if (mode & S_IROTH) str[6] = 'r';
if (mode & S_IWOTH) str[7] = 'w';
if (mode & S_IXOTH) str[8] = 'x';

printf("%s\n", str);
}

}

User IDs and Group IDs

• Every process has four or more IDs associated with it

• Real user id (uid), Real group ID (gid)
• who we really are
• determined when we log in

• Effective user id (euid), Effective group ID (egid)
• used for file access permission checks

setuid & setgid

• Every file has an owner and a group owner.
• the owner: st_uid of the stat structure
• the group owner: st_gid

• When we execute a program file,
• Usually, the effective user ID == the real user ID
• setuid & setgid: Special flags in the file’s mode

• If set, set the effective user ID (group ID) of the process to the owner (group)
of the file

• rwsrwsrwx: a bit string encoding for setuid & setgid
• S_ISUID, S_ISGID: mask for setuid & setgid

How permission checking works

• If the effective user ID of the process is 0 (the superuser), access is allowed.

• If the effective user ID of the process equals the owner ID of the file (i.e., the
process owns the file), access is allowed

• If the effective group ID of the process (or one of the supplementary group
IDs of the process) equals the group ID of the file, access is allowed

• If the appropriate other access permission bit is set, access is allowed.

• Otherwise, permission is denied.

Quiz

$ id
uid=1002(alice) gid=1003(alice) groups=1003(alice)

Can I read these files?
$ ls -l
total 16
-rw-rw-r-- 1 alice alice 12 Aug 14 21:45 file1
-rw-rw-r-- 1 root alice 12 Aug 14 21:42 file2
-rw-rw-r-- 1 root root 12 Aug 14 21:45 file3
-r--r----- 1 root root 12 Aug 14 21:46 file4

Can I read file4 using cat?
$ ls -l
total 60
-rwxr-xr-x 1 alice alice 43416 Aug 14 21:47 cat
...
-r--r----- 1 root root 12 Aug 14 21:46 file4

Can I read file4 using cat?
$ ls -l
total 60
-rwsr-xr-x 1 alice alice 43416 Aug 14 21:47 cat
...
-r--r----- 1 root root 12 Aug 14 21:46 file4

Can I read file4 using cat?
$ ls -l
total 60
-rwsr-xr-x 1 root alice 43416 Aug 14 21:47 cat
...
-r--r----- 1 root root 12 Aug 14 21:46 file4

$ man chmod

• Change file mode bits (i.e., permissions)
• chmod [OPTION]... OCTAL-MODE FILE...

• e.g.,
• chmod 755 hello.txt

Change hello.txt’s permission to rwxr-xr-x
(Octal mode: r = 4, w = 2, x = 1)

• chmod 4755 hello.txt
Change hello.txt’s permission to rwsr-x-r-x
(Special permissions: setuid = 4, setgid = 2, sticky bit = 1)

$ man chown

• Change file owner and group
• chown [OPTION]... [OWNER][:[GROUP]] FILE...

• e.g.,
• chmod root hello.txt

Change the owner of hello.txt to “root”
• chmod root:staff hello.txt

Likewise, but also change its group to “staff”

Symbolic link

• A symbolic link is an indirect pointer to a file
• e.g., .lnk file in Windows

• You can create it using ln command
• e.g., ln –s [src] [dst]

• Interesting property regarding security: You can create
symbolic link even you don’t have enough permission for
source

• e.g., You can make symbolic link for a file even you cannot read the
file, or the file has setuid permission

Quiz

• Let’s assume that this is a setuid root binary
• NOTE: access() is a function that checks permission with an
original user (not root).

• Can I write a file that only root can do?

if(!access(file,W_OK)) {
f = fopen(file,"w+");
operate(f);
...

}
else {
fprintf(stderr,"Unable to open file %s.\n",file);

}

Yes. That’s what we say
time-of-check to time-

of-use (TOCTOU)

f*, *at functions

• There are multiple variant functions that prevent TOCTOU
• openat()
• faccessat()
• fstat()
• fchown(),
• …

• You should use them for protecting from TOCTOU
• In the previous example, open a file first, then use fstat to check

permission manually

Directories

• Directory consists of an array of links
• Each link maps a filename to a file

• Each directory contains at least two entries
• . (dot) is a link to itself
• .. (dot dot) is a link to the parent directory in the directory hierarch

y (next slide)

• Commands for manipulating directories
• mkdir: create empty directory
• ls: view directory contents
• rmdir: delete empty directory

Directory Hierarchy

• All files are organized as a hierarchy anchored by root directory n
amed / (slash)

• Kernel maintains current working directory (cwd) for each process
• Modified using the cd command

/

bin/ dev/ etc/ home/ usr/

bash tty1 group passwd droh/ bryant/ include/ bin/

stdio.h vimsys/

unistd.h

hello.c

Reading Directories
#include <dirent.h>

DIR *opendir(const char *pathname);
// Returns: pointer if OK, NULL on error

struct dirent *readdir(DIR *dp);
// Returns: pointer if OK, NULL at end of d
irectory or error

int closedir(DIR *dp);
// Returns: 0 if OK, 1 on error

struct dirent {
ino_t d_ino; /* Inode number */
off_t d_off; /* Not an offset; see below */
unsigned short d_reclen; /* Length of this record */
unsigned char d_type; /* Type of file; not supported

by all filesystem types */
char d_name[256]; /* Null-terminated filename */
};

#include <dirent.h>
#include <stdio.h>
#include <stdlib.h>

int main(int argc, char** argv) {
DIR *dir;
struct dirent *ent;
if ((dir = opendir (argv[1])) != NULL) {
/* print all the files and directories wit

hin directory */
while ((ent = readdir (dir)) != NULL) {
printf ("%s ", ent->d_name);

}
printf("\n");
closedir (dir);

} else {
/* could not open directory */
perror ("");
return EXIT_FAILURE;

}
}

$./listdir /
home srv etc opt root Docker li
b mnt usr media lib64 sys dev s
bin boot bin run lib32 libx32 i
nit proc snap tmp var lost+foun
d .. .

#include <dirent.h>

int scandir(const char *restrict dirp,
struct dirent ***restrict namelist,
int (*filter)(const struct dirent *),
int (*compar)(const struct dirent **,

const struct dirent **));

int alphasort(const struct dirent **a, const struct dirent **b);

#define _DEFAULT_SOURCE
#include <dirent.h>
#include <stdio.h>
#include <stdlib.h>

int
main(void)
{

struct dirent **namelist;
int n;

n = scandir(".", &namelist, NULL, alphasort);
if (n == -1) {

perror("scandir");
exit(EXIT_FAILURE);

}

while (n--) {
printf("%s\n", namelist[n]->d_name);
free(namelist[n]);

}
free(namelist);

exit(EXIT_SUCCESS);
}

Standard I/O Functions

• The C standard library (libc.so) contains a collection of higher-level standard I/O
functions

• Examples of standard I/O functions:
• Opening and closing files (fopen and fclose)
• Reading and writing bytes (fread and fwrite)
• Reading and writing text lines (fgets and fputs)
• Formatted reading and writing (fscanf and fprintf)

#include <stdio.h>
extern FILE *stdin; /* standard input (descriptor 0) */
extern FILE *stdout; /* standard output (descriptor 1) */
extern FILE *stderr; /* standard error (descriptor 2) */

int main() {
fprintf(stdout, "Hello, world\n");

}

Buffered I/O: Motivation

• Applications often read/write one character at a time
• getc, putc, ungetc
• gets, fgets

• Read line of text one character at a time, stopping at newline

• Implementing as Unix I/O calls expensive
• read and write require Unix kernel calls

• > 10,000 clock cycles

• Solution: Buffered read
• Use Unix read to grab block of bytes
• User input functions take one byte at a time from buffer

• Refill buffer when empty

unreadalready readBuffer

Buffering in Standard I/O

• Standard I/O functions use buffered I/O

• Buffer flushed to output fd on “\n”, call to fflush or exit, or return from main.

printf("h");

h e l l o \n . .

printf("e");
printf("l");

printf("l");
printf("o");

printf("\n");

fflush(stdout);

buf

write(1, buf, 6);

Standard I/O Buffering in Action

• You can see this buffering in action for yourself, using the
always fascinating Linux strace program:

linux> strace ./hello
execve("./hello", ["hello"], [/* ... */]).
...
write(1, "hello\n", 6) = 6
...
exit_group(0) = ?

#include <stdio.h>

int main()
{

printf("h");
printf("e");
printf("l");
printf("l");
printf("o");
printf("\n");
fflush(stdout);
exit(0);

}

FILE* based I/O

• One of the basic ways to manage input and output is to use
the FILE set of functions provided by libc.

• The FILE structure is a set of data items that are created to manage
input and output for the programmer.

• An abstraction of “high level” reading and writing files that avoids
some of the details of programming.

• Almost always used for reading and writing ASCII data

fopen()

• The fopen function opens a file for IO and returns a pointer
to a FILE* structure:

• FILE *fopen(const char *path, const char *mode);

• Where,
• path is a string containing the absolute or relative path to the file to

be opened.
• mode is a string describing the ways the file will be used
• For example,

FILE *file = fopen(filename, "r+");
• Returns a pointer to FILE* if successful, NULL otherwise

• You don’t have to allocate or deallocate the FILE* structure

fopen() mode

• “r” - Open text file for reading. The stream is positioned at the
beginning of the file.

• “r+”-Open for reading and writing. The stream is positioned at the
beginning of the file.

• “w” - Truncate file to zero length or create text file for writing. The
stream is positioned at the beginning of the file.

• “w+” - Open for reading and writing. The file is created if it does
not exist, otherwise it is truncated.

• “a” Open for appending (writing at end of file). The file is created
if it does not exist.

• “a+” Open for reading and appending (writing at end of file). The
file is created if it does not exist.

Reading the file

• There are two dominant ways to read the file, fscanf and
fgets

• fscanf reads the data from the file just like scanf, just reading and
writing, e.g.,

• fgets reads the a line of text from the file, e.g.,

Writing the file

• There are two dominant ways to write the file, fprintf and
fputs

• fprintf writes the data to the file just like printf, just reading and
writing, e.g.,

• fputs writes the a line of text to the file, e.g.,

fflush()

• FILE*-based IO is buffered
• fflush attempts to reset/the flush state

• int fflush(FILE *stream);

• FILE*-based writes are buffered, so there may be data written, but not yet
pushed to the OS/disk.

• fflush() forces a write of all buffered data
• FILE*-based reads are buffered, so the current data (in the process space)

may not be current
• fflush() discards buffered data from the underlying file

• If the stream argument is NULL, fflush() flushes all open output
streams

fclose()

• fclose() closes the file and releases the memory associated
with the FILE* structure.

Example program

fopen() vs. open()

• Key differences between fopen and open
• fopen provides you with buffering IO that may or may not turn out to be

a faster than what you're doing with open.
• fopen does line ending translation if the file is not opened in binary mode,

which can be very helpful if your program is ever ported to a non-Unix
environment.

• A FILE * gives you the ability to use fscanf and other stdio functions that
parse out data and support formatted output.

• When to use (IMO)
• use FILE* style I/O

• High level abstraction is required (porting), for ASCII processing
• file handle I/O

• If you deeply understand how to handle IO, for binary data processing

Buffered I/O

• When the system is buffering
• It may read more that requested in the expectation you will

• read more later (read buffering)
• it may not commit all bytes to the target (write buffering)

Unbuffered I/O ?

Blocking I/O

• Read or write function call will be blocked until it gets some
responses -> performance problem

• Non-blocking I/O
• The call does not wait for the read or write to complete before returning

(just does its best)
• Thus a write/read may commit/return some, all, or none of the data

requested
• When fewer than request bytes are read/written this is called a short read

or short write

• Note: how you program I/O operations is dependent on the
blocking behavior of I/O you are using.

I/O Redirection

• Redirection uses file for inputs, outputs, or both
• Output redirection sends the output of a program to a file (redirects

to a file), e.g.,
• echo “EE488 system programming” > out.dat

• Input redirection uses the contents of a file as the program input
(reredirects from a file), e.g.,

• cat < out.dat

$ echo “EE488 system programming” > out.dat
$ cat out.dat
EE488 system programming

$ cat < out.dat
EE488 system programming

Pipes

• Pipes take the output from one program and uses it as input
for another, e.g.,

• cat this.dat | less

• You can also chain pipes together, e.g.,
• cat numbers.txt | sort -n | cat

	EE309 Advanced Programming Techniques for EE��Lecture 5: Files and Directories
	Today’s lecture
	stat(), lstat()
	슬라이드 번호 4
	File types
	Example
	Access control
	Unix/Linux file system permissions
	Unix/Linux Access Policy
	The nine file access permission bits, from <sys/stat.h>
	슬라이드 번호 11
	User IDs and Group IDs
	setuid & setgid
	How permission checking works
	Quiz
	슬라이드 번호 16
	$ man chmod
	$ man chown
	Symbolic link
	Quiz
	f*, *at functions
	Directories	
	Directory Hierarchy	
	Reading Directories
	슬라이드 번호 25
	슬라이드 번호 26
	슬라이드 번호 27
	슬라이드 번호 28
	Standard I/O Functions
	Buffered I/O: Motivation
	Buffering in Standard I/O
	Standard I/O Buffering in Action
	FILE* based I/O
	슬라이드 번호 34
	fopen()
	fopen() mode
	Reading the file
	Writing the file
	fflush()
	fclose()
	Example program
	슬라이드 번호 42
	fopen() vs. open()
	슬라이드 번호 44
	슬라이드 번호 45
	Buffered I/O
	Blocking I/O
	I/O Redirection
	Pipes

