EE309 Advanced Programming
Techniques for EE

Lecture 5: Files and Directories
INSU YUN (& ¢2l=)

School of Electrical Engineering, KAIST

[Lecture Slides Based on Prof. Shin SEUNGWON 2020]

Today's lecture

e Learn APIs for files and directories

stat (), lstat ()

#include <sys/stat.h>

int stat (const char *restrict pathname, struct stat *restrict buf);
int lstat (const char *restrict pathname, struct stat *restrict buf);

All return: 0 if OK, 1 on error

e Returns a structure of information about the named file

* Istat () vs stat (): Returns information about the symbolic
link, not the file referenced by the symbolic link
 Explain the symbolic link later

struct stat {

mode t
ino t
dev t
dev t
nlink t
uid t
gid t
off t
time t
time t
time t
blksize t
blkecnt t

st mode;
st 1ino;

st dev;

st rdev;
st nlink;
st uid;

st gid;

st size;
st atime;
st mtime;
st ctime;
st blksize;
st blocks;

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

file type & mode (permissions) */
i-node number (serial number) */
device number (file system) */
device number for special files */
number of links */

user ID of owner */

group ID of owner */

size in bytes, for regular files */
time of last access */

time of last modification */

time of last file status change */
best I/0 block size */

number of disk blocks allocated */

File types

» We've talked about two different types of files so far: regular files
and directories.

* Most files on a UNIX system are either regular files or directories,
but there are additional types of files. The types are:
« Regular file

* Directory file

» Socket: A type of file used for network communication between processes.
A socket can also be used for non-network communication between

processes on a single host.
« Symbolic link. A type of file that points to another file (Later)

Example

int main(int argc, char *argvl[]) {

int 1;

struct stat buf;

char *ptr;

for (i = 1; 1 < argc; i++) {
printf("$s: ", argv([il]);

if (lstat(argv([i], é&buf) < 0) {
perror ("lstat error");
continue;

}
if (S ISREG(buf.st mode))

ptr = "regular";

else if (S ISDIR(buf.st mode))
ptr = "directory";

else if (S ISLNK(buf.st mode))
ptr = "symbolic link";

else if (S ISSOCK (buf.st mode))
ptr = "socket";

else
ptr = "** unknown mode **";

printf ("$s\n", ptr);

Macro Type of file
S_ISREG() regular file
S_ISDIR() directory file
S_ISLNKJ() symbolic link

S_ISSOCK() socket

Q: What happens if |
change Istat to stat?

$ sudo ./lstat /etc/passwd

/etc —

/var/run/mysqgld/mysqgld.sock
/dev/stdin
/etc/passwd: regular
/etc: directory
/var/run/mysgld/mysgld.sock: socket
/dev/stdin: symbolic link

Access control

» The UNIX filesystem implements discretionary access control
through file permissions set by user

« The permissions are set at the discretion of the user

* Every file in the file system has a set of bits which determine who
has assess to the file

* User: the owner is typically the creator of the file, and the entity in control
of the access control policy

« Group: a set of users on the system setup by the admin
 Other: the set of everyone on the system

» Note: this can be overridden by the “root” user

Unix/Linux file system permissions

* There are three permissions in the UNIX filesystem
« READ: allows the subject (process) to read the contents of the file
- WRITE: allows the subject (process) to alter the contents of the file

« EXECUTE: allows the subject (process) to execute the contents of the
file (e.g., shell program, executable)

* For directory
« READ: allows the subject (process) to list the files in the directory

» WRITE: allows the subject (process) to write (e.g., create, rename,
delete, modify) files in the directory

« EXECUTE: allows the subject (process) to access files in the directory
* e.g. to create (or delete) a file, you also need executable permission

Unix/Linux Access Policy

* Really, this Is a bit string encoding an access policy:

rwX rwX Irwx

| Other
Group
Owner
« And a policy is encoded as “r", "w", “x" if enabled, and “-" if not,
e.g.,
$ 1s -1 .
total 28
-rw-r—--r-- 1 1nsu 1nsu 0 Aug 14 20:20 fopen.dat
o Says US| —rwxr-xr-x 1 insu insu 16464 Aug 14 20:20 hello)nd Write,
and WO| rtw-r--r—-- 1 1insu insu 16 Aug 14 20:20 hello.c
—rwxXr-xr-x 1 1nsu 1nsu 12 Aug 14 20:20 hello.sh

The nine file access permission bits,
from <sys/stat.h>

st mode mask Meaning
S IRUSR user-read
S_IWUSR user-write
S _IXUSR user-execute
S_IRGRP group-read
S_IWGRP group-write
S_IXGRP group-execute
S IROTH other-read
S IWOTH other-write
S_IXOTH other-execute

int main(int argc, char *argv[]) {
int i,
struct stat buf;
char *ptr;

for (1 = 1; 1 < argc; i++) {
printf ("%$s: ", argv([i]);
if (lstat(argv([i], &buf) < 0)
perror ("lstat error");
continue;

char str[] = "-———-———- ;
mode t mode = buf.st mode;

if (mode & S IRUSR) str[0]
if (mode & S IWUSR) str[l]
if (mode & S IXUSR) str[2]

if (mode & S IRGRP) str[3]
if (mode & S IWGRP) str[4]
if (mode & S IXGRP) str[5]

%]

if (mode
if (mode
if (mode

S IROTH) str[6]
S_IWOTH) str[7]
S _IXOTH) str[8]

2

printf ("$s\n", str);

S sudo

/etc/p
/etc:

/var/run/mysqgld/mysqgld.sock:

/dev/s

./permission /etc/passwd \
/etc \

/var/run/mysqld/mysgld.sock \

/dev/stdin
asswd: rw-—-r—-——-r—-
rwXr—-Xr—x

tdin: rwXrwxrwx

FwXrwXrwXx

User IDs and Group IDs

* Every process has four or more IDs associated with it

* Real user id (uid), Real group ID (gid)
« who we really are
 determined when we log In

« Effective user id (euid), Effective group ID (egid)

« used for file access permission checks

setuid & setgid

* Every file has an owner and a group owner.
* the owner: st uid of the stat structure
 the group owner: st_gid

« When we execute a program file,
 Usually, the effective user ID == the real user ID

« setuid & setgid: Special flags in the file's mode

* |If set, set the effective user ID (group ID) of the process to the owner (group)
of the file

« rwsrwsrwx: a bit string encoding for setuid & setgid
« S_ISUID, S_ISGID: mask for setuid & setgid

How permission checking works

If the effective user ID of the process is 0 (the superuser), access is allowed.

If the effective user ID of the process equals the owner ID of the file (i.e, the
process owns the file), access is allowed

the effective group ID of the process (or one of the supplementary group

It or
IDs of the procéss) equals the group ID of the file, access is allowed

If the appropriate other access permission bit is set, access is allowed.

Otherwise, permission is denied.

Qu

|Z

S id

uid=1002 (alice)

gid=1003 (alice)

groups=1003 (alice)

Can I read

S 1s -1
total 16

- IrW—Yw—-r—-—
- IrTW—Yw—-r—-
- IrTW—Yrw—-r—-
e ——p—————

e

these

alice
root
root
root

files?

alice
alice
root
root

12
12
12
12

Aug
Aug
Aug
Aug

14 21:45 filel
14 21:42 file?
14 21:45 file3
14 21:46 filed

Can I read file4d using cat?

$ 1ls -1

total 60

—-rwxr-xr-x 1 alice alice 43416 Aug 14 21:47 cat
-r—-—-r—-——-—-—- 1 root <root 12 Aug 14 21:46 filed
Can I read file4 using cat?

$ 1s -1

total 60

—rwsr-xr-x 1 alice alice 43416 Aug 14 21:47 cat
-r—--r—-—-—--- 1 root root 12 Aug 14 21:46 filed
Can I read file4d using cat?

S 1s -1
total 60
- YWSr—-xXr—-x 1

-r-——-r-——-——-—-—- 1

root alice 43416 Aug 14 21:477 cat

root

root

12 Aug 14 21:46 filed

S man chmod

« Change file mode bits (i.e., permissions)
e chmod /OPTION]... OCTAL-MODE FILE...

*eg.,
* chmod 755 hello.txt_.
Chan?e hello.txt's permission to rwxr-xr-x
(Octal mode: r =4, w =2, x =1)

* chmod 4755 hello.txt
Change hello.txt's permission to rwsr-x-r-x .
(Special permissions: setuid = 4, setgid = 2, sticky bit = 1)

S man chown

« Change file owner and group
« chown [OPTION.... [OWNER[{GROUR] FILE...

*e.q.,
* chmod root hello.txt
Change the owner of hello.txt to “root”
* chmod root:staff hello.txt
Likewise, but also change its group to “staff”

Symbolic link

- : C : : League of
A symbolic link is an indirect pointer to a file Legends

* e.g., .Ink file in Windows

 You can create It using 1n command
*eg., 1ln —-s [src] [dst]

. Interest.in?. property regardin(_:f1 security: You can create
symbolic link even you don’t have enough permission for
source

* .9, You can make symbolic link for a file even you cannot read the
file, or the file has setuid permission

Quiz

if(laccess(file,W OK)) {
f = fopen(file,"wt+");
operate (f) ;

}

else {
fprintf (stderr, "Unable to open file %s.\n", file);

}

* Let's assume that this is a sety Yes. That's what we say
time-of-check to time-

» NOTE: access() is a function th of.use rocTou)y PN with an
original user (not root).

« Can | write a file that only root can do?

f* *at functions

* There are multiple variant functions that prevent TOCTOU
* openat()
 faccessat()
o fstat()
« fchown(),

* You should use them for protecting from TOCTOU

* In the previous example, open a file first, then use fstat to check
permission manually

Directories

* Directory consists of an array of /inks
 Each link maps a filename to a file

 Each directory contains at least two entries
e . (dot) is a link to itself

« .. (dot dot) is a link to the parent directory in the directory hierarch
y (next slide)

« Commands for manipulating directories
« mkdir: create empty directory
 1s: view directory contents
« rmdir: delete empty directory

Directory Hierarchy

« All files are organized as a hierarchy anchored by root directory n
amed / (slash ? /

———— T

bin/ dev/ etc/ home/ usr/
bash ttyl group passwd droh/ bryant/ include/ bin/
hello.c stdio.h sys/ vim

unistd.h

 Kernel maintains current working directory (cwd) for each process
« Modified using the cd command

Reading Directories

#include <dirent.h>

DIR *opendir (const char *pathname);
// Returns: pointer if OK, NULL on error

struct dirent *readdir (DIR *dp);
// Returns: pointer if OK, NULL at end of d
irectory Or error

int closedir (DIR *dp);
// Returns: 0 i1f OK, 1 on error

struct dirent {

ino t d 1ino;
off t d off;
unsigned short d reclen;
unsigned char d type;

char d name[256];
bi

/*
/*
/*
/*

/*

Inode number */

Not an offset,; see below */
Length of this record */
Type of file; not supported
by all filesystem types */
Null-terminated filename */

#include <dirent.h>
#include <stdio.h>
#include <stdlib.h>

int main(int argc, char** argv) {

DIR *dir;
struct dirent *ent;
if ((dir = opendir (argv([1l])) != NULL) {

/* print all the files and directories wit
hin directory */
while ((ent = readdir (dir)) != NULL) {
printf ("%s ", ent->d name);
}
printf ("\n") ;
closedir (dir);

} else {
/* could not open directory */
perror ("");

return EXIT FAILURE;

S ./listdir /

home srv etc opt root Docker 11
b mnt usr media 1ib64 sys dev s
bin boot bin run 1ib32 1ibx32 1
nit proc snap tmp var lost+foun
d

#include <dirent.h>

int scandir (const char *restrict dirp,
struct dirent ***restrict namelist,
int (*filter) (const struct dirent *),
int (*compar) (const struct dirent *~*,
const struct dirent **));

int alphasort (const struct dirent **a, const struct dirent **Db);

#define DEFAULT SOURCE
#include <dirent.h>
#include <stdio.h>
#include <stdlib.h>

int
main (void)
{

struct dirent **namelist;

int n;
n = scandir(".", &namelist, NULL, alphasort);
if (n == -1) {

perror ("scandir") ;
exit (EXIT FAILURE) ;

while (n—-) {
printf ("%$s\n", namelist[n]->d name);
free (namelist[n]);

}

free (namelist) ;

exit (EXIT SUCCESS);

Standard |/O Functions

« The C standard library (1ibc.so) contains a collection of higher-level standard |/O
functions

« Examples of standard I/O functions:
« Opening and closing files (fopen and fclose)
« Reading and writing bytes (fread and fwrite)
« Reading and writing text lines (Egets and fputs)
« Formatted reading and writing (Escanf and fprintf)

#include <stdio.h>

extern FILE *stdin; /* standard input (descriptor 0) */
extern FILE *stdout; /* standard output (descriptor 1) */
extern FILE *stderr; /* standard error (descriptor 2) */

int main () {
fprintf (stdout, "Hello, world\n");

}

Buffered 1I/O: Motivation

 Applications often read/write one character at a time
* getc, putc, ungetc
* gets, fgets
« Read line of text one character at a time, stopping at newline

 Implementing as Unix I/O calls expensive
« read and write require Unix kernel calls
« > 10,000 clock cycles

* Solution: Buffered read
« Use Unix read to grab block of bytes

« User input functions take one byte at a time from buffer
« Refill buffer when empty

Buffer | already read unread

Buffering in Standard 1/0O

« Standard 1/O functions use buffered I/O

printf ("h");

printf ("e");

printf ("1");

printf ("1");

printf ("o");

buf \ printf ("\n");

he \n

fflush (stdout) ;

v

write (1, buf, ©0);

 Buffer flushed to output fd on “Wn", call to £flush or exit, or return from main.

Standard |/O Buffering in Action

* You can see this buffering in action for yourself, using the
always fascinating Linux strace program:

{

int main ()

#include <stdio.h>

printf ("h");

(
printf ('
printf (
printf ("
printf ('
printf ("
fflush (
exit (0) ;

0O - =0 -

)
i
L} ");
).
)

\n") ;

stdout) ;

linux> strace ./hello

execve ("./hello", ["hello"], [/* ... */1).
write (1, "hello\n", 6) = 6
exit group (0) = ?

FILE* based |/O

* One of the basic ways to manage input and output is to use
the FILE set of functions provided by libc.
« The FILE structure is a set of data items that are created to manage

input and output for the programmer.

« An abstraction of “high level” reading and writing files that avoids
some of the details of programming.

« Almost always used for reading and writing ASCII data

(gdb) p *file
$3 = { _flags = -72539008, IO read ptr = 0x0, IO read end = 0x0,

_IO read base = 0x0, IO write base = 0x0, TO write ptr = 0x0,
_IO write end = 0x0, IO buf base = 0x0, IO buf end = 0x0,
_IO _save base = 0x0, IO backup base = 0x0, IO save end = 0xO0,

markers = 0x0, chain = 0x7ffff7dd41a0 < IO 2 1 stderr >, fileno =

7,f_flags2 = 0, _old offset = 0, cur column = O,
_vtable offset = 0 '\ooo"', _shortbuf = "", lock = 0x6020f0, offset
= -1, padl = 0x0, pad2 = 0x602100, pad3 = 0x0, _ pad4 = Ox0,
__pad5 = 0, mode = 0, _unused2 = '\000' <repeats 19 times>}

245 struct _IO_FILE {

246 int _flags; /* High-order word is _IO MAGIC; rest is flags. */
247 #define _IO_file flags _flags
248

249 /* The following pointers correspond to the C++ streambuf protocol. #*/
250 /* Note: Tk uses the _IO read ptr and _IO read end fields directly. */
251 char* _TI0_read_ptr; /#* Current read pointer */

252 char* IO read_end; /* End of get area. */

253 char* _IO_read_base; /* Start of putback+get area. */

254 char* _IO write base; /# Start of put area. */

255 char* _IO _write_ptr; /#* Current put pointer. #*/

256 char* _IO write_end; /# End of put area. */

257 char* _IO_buf_base; /* Start of reserve area. */

258 char* IO buf end; /* End of reserve area. */

259 /* The following fields are used to support backing up and undo. #*/

260 char *_IO save_base; /* Pointer to start of non-current get area. */
261 char *_ IO backup base; /# Pointer to first valid character of backup area */
262 char *_IO save_end; /* Pointer to end of non-current get area. */

263

264 struct _IO marker *_ markers;

265

266 struct _IO FILE *_chain;

267

268 int _fileno;

269 #if 0

270 int _blksize;

271 #else

272 int _flags2;

273 #endif

274 _I0_off_t _old_offset; /* This used to be _offset but it's too small. #*/
275

276 #define _ HAVE_COLUMN /# temporary #*/

277 /* l+column number of pbase(); 0 is unknown. */

278 unsigned short _cur_column;
279 signed char _vtable offset;
280 char _shortbuf[1];

281

282 /* char* _save gptr; char* _save egptr; */
283

284 _I0_lock t *_lock;

285 #ifdef _IO_USE_OLD_IO_ FILE
TRA L.

fopen()

* The fopen function opens a file for |10 and returns a pointer
to a FILE* structure:

* FILE *fopen(const char *path, const char *mode);

* Where,

 path is a string containing the absolute or relative path to the file to
be opened.

« mode is a string describing the ways the file will be used
« For example,
FILE *file = fopen(filename, "r+");
 Returns a pointer to FILE* if successful, NULL otherwise
* You don't have to allocate or deallocate the FILE* structure

fopen() mode

* 'r" - Open text file for reading. The stream is positioned at the
beginning of the file.

* 'r+"-Open for reading and writing. The stream is positioned at the
beginning of the file.

« “"w" - Truncate file to zero length or create text file for writing. The
stream is positioned at the beginning of the file.

« "w+" - Open for reading and writing. The file is created if it does
not exist, otherwise it is truncated.

* "a” Open for appending (writing at end of file). The file is created
if it does not exist.

« "a+" Open for reading and appending (writing at end of file). The
file is created if it doés not exist.

Reading the file

* There are two dominant ways to read the file, fscanf and
fgets

« fscanf reads the data from the file just like scanf, just reading and
writing, e.g.,

if (fscanf(file, "%d %d %d\n", &x, &y, &z) == 3) {

printf("Read coordinates [%d,%d, %d]\n", x, vy, 2z);
}

« fgets reads the a line of text from the file, e.g,,

if (fgets(str,128,file) != NULL) {

printf("Read line [%s]\n", str);
}

Writing the file

* There are two dominant ways to write the file, fprintf and
fputs

« fprintf writes the data to the file just like printf, just reading and
writing, e.g.,

fprintf (file, "%d %d %d\n", x, vy, z);

« fputs writes the a line of text to the file, e.g.,

if (fputs(str,file) != NULL) {

printf("wrote line [%s]\n", str);

}

fflush()

 FILE*-based 10 is buffered
o fflush attempts to reset/the flush state

e int fflush(FILE *stream);

 FILE*-based writes are buffered, so there may be data written, but not yet
pushed to the OS/disk.

« fflush() forces a write of all buffered data

 FILE*-based reads are buffered, so the current data (in the process space)
may not be current

« fflush() discards buffered data from the underlying file

* If the stream argument is NULL, fflush() flushes a// open output
streams

fclose()

» fclose() closes the file and releases the memory associated
with the FILE* structure.

fclose(file) ;

file = NULL;

Note: fclose implicitly flushes the data to storage.

Example program

int show_fopen(void) {

// Setup variables

int %, vy, z;

FILE *file;

char *filename = "/tmp/fopen.dat", str[l128];
file = fopen(filename, "r+");

// open for reading and writing

if (file == NULL) {
fprintf(stderr, "fopen() failed, error=%s\n", strerror(errno));
return(-1);

}

// Read until you reach the end
while ('feof(file)) {
if (fscanf(file, "%d %d %d\n", &x, &y, &z) == 3) {
printf({ "Read coordinates [%d,%d,%d]l\n", x, vy, Z);
}
if ('feof(file)) {
fgets(str,128,£file); // Need to get end of previous line
if (fgets(str,128,file) '= NULL) {
printf("Read line [%$s]\n", str);

// Now add some new coordinates

= 21;

= 34;

= 98;
fprintf(file, "%d %d %d\n", x, vy,
printf("Wrote %d %d4d %d\n", x, vy,
if (fputs(str,file) >= 0) {

printf("wrote line [%s]\n",

}
fflush(file) ;

// Close the file and return
fclose(file) ;
return(0);

$ cat /tmp/fopen.dat
123

4 5 6

11 12 14

16 17 23

$./io

This is cmpsc31ll, IO example
Read coordinates [1,2,3]
Read line [11 12 14

1

Read coordinates [16,17,23]
Wrote 21 34 98

wrote line [11 12 14

1

$ cat /tmp/fopen.dat
123

4 5 6

11 12

16 17

21 34

11 12

$

fopen() vs. open()

 Key differences between fopen and open

 fopen provides you with buffering 10 that may or may not turn out to be
a tfaster than what you're doing with open.

- fopen does line ending translation if the file is not opened in binary mode
which can be very helpful if your program is ever ported to a non-Unix
environment.

« A FILE * gives you the ability to use fscanf and other stdio functions that
parse out data and support formatted output.

 When to use (IMO)

 use FILE* style 1/O
« High level abstraction is required (porting), for ASCIl processing
« file handle 1/O

« |If you deeply understand how to handle IO, for binary data processing

Process
Pl
g
fwrite [/| fprintf / fputc]
stdio buffer
Y
[write syscpll]
Usermode T
Kernel
v VFS

[...]

Kemel Block 10 Layers
(a big black box for now)

[...]

Block Driver

Storage device

« Each of the styles of I/O requires a different set of
include files

— FILE™ requires:

#include <stdio.h>

~ file handle I/O requires:

#include <sys/types.h>
#include <sys/stat.h>

#include <fcntl.h>
#include <unistd.h>

Buffered 1/0O

* When the system is buffering
* It may read more that requested in the expectation you will

 read more later (read buffering)
* it may not commit all bytes to the target (write buffering)

Unbuffered 1/0 ?

Blocking 1I/O

« Read or write function call will be blocked until it gets some
responses -> performance problem

» Non-blocking 1/0
* The call does not wait for the read or write to complete before returning
(just does its best)

« Thus a write/read may commit/return some, all, or none of the data
requested

« When fewer than request bytes are read/written this is called a short read
or short write

« Note: how you program |/O operations is dependent on the
blocking behavior of 1/O you are using.

|/O Redirection

* Redirection uses file for inputs, outputs, or both

 Output redirection sends the output of a program to a file (redirects
to a file), e.q.,
« echo "EE488 system programming” > out.dat

$ echo “EE488 system programming” > out.dat

$ cat out.dat
EE488 system programming

* Input redirection uses the contents of a file as the program input
(reredirects from a file), e.q.,

* cat
$ cat < out.dat
EE488 system programming

Pipes

* Pipes take the output from one program and uses it as input
for another, e.q.,
« cat this.dat | less

 You can also chain pipes together, e.qg.,
 cat numbers.txt | sort -n | cat

3$ cat numbers. txt

14
21
7
4
$ cat numbers.txt | sort -n | cat
4
)
14
21

$

	EE309 Advanced Programming Techniques for EE��Lecture 5: Files and Directories
	Today’s lecture
	stat(), lstat()
	슬라이드 번호 4
	File types
	Example
	Access control
	Unix/Linux file system permissions
	Unix/Linux Access Policy
	The nine file access permission bits, from <sys/stat.h>
	슬라이드 번호 11
	User IDs and Group IDs
	setuid & setgid
	How permission checking works
	Quiz
	슬라이드 번호 16
	$ man chmod
	$ man chown
	Symbolic link
	Quiz
	f*, *at functions
	Directories	
	Directory Hierarchy	
	Reading Directories
	슬라이드 번호 25
	슬라이드 번호 26
	슬라이드 번호 27
	슬라이드 번호 28
	Standard I/O Functions
	Buffered I/O: Motivation
	Buffering in Standard I/O
	Standard I/O Buffering in Action
	FILE* based I/O
	슬라이드 번호 34
	fopen()
	fopen() mode
	Reading the file
	Writing the file
	fflush()
	fclose()
	Example program
	슬라이드 번호 42
	fopen() vs. open()
	슬라이드 번호 44
	슬라이드 번호 45
	Buffered I/O
	Blocking I/O
	I/O Redirection
	Pipes

