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Today
 Explicit free lists
 Segregated free lists
 Garbage collection
 Memory-related perils and pitfalls
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Keeping Track of Free Blocks
 Method 1: Implicit free list using length—links all blocks

 Method 2: Explicit free list among the free blocks using pointers

 Method 3: Segregated free list
 Different free lists for different size classes

 Method 4: Blocks sorted by size
 Can use a balanced tree (e.g. Red-Black tree) with pointers within each 

free block, and the length used as a key

5 4 26

5 4 26
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Explicit Free Lists

 Maintain list(s) of free blocks, not all blocks
 The “next” free block could be anywhere

 So we need to store forward/back pointers, not just sizes
 Still need boundary tags for coalescing
 Luckily we track only free blocks, so we can use payload area

Size

Payload and
padding

a

Size a

Size a

Size a

Next

Prev

Allocated (as before) Free



KAIST

5

Explicit Free Lists
 Logically:

 Physically: blocks can be in any order

A B C

4 4 4 4 66 44 4 4

Forward (next) links

Back (prev) links

A B

C
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Allocating From Explicit Free Lists

Before

After

= malloc(…)

(with splitting)

conceptual graphic
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Freeing With Explicit Free Lists
 Insertion policy: Where in the free list do you put a newly 

freed block?
 LIFO (last-in-first-out) policy

 Insert freed block at the beginning of the free list
 Pro: simple and constant time
 Con: studies suggest fragmentation is worse than address ordered

 Address-ordered policy
 Insert freed blocks so that free list blocks are always in address 

order: 
addr(prev) < addr(curr) < addr(next)

 Con: requires search
 Pro: studies suggest fragmentation is lower than LIFO
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Freeing With a LIFO Policy (Case 1)

 Insert the freed block at the root of the list

free( )

Root

Root

Before

After

conceptual graphic
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Freeing With a LIFO Policy (Case 2)

 Splice out predecessor block, coalesce both memory blocks, 
and insert the new block at the root of the list

free( )

Root

Root

Before

After

conceptual graphic
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Freeing With a LIFO Policy (Case 3)

 Splice out successor block, coalesce both memory blocks and 
insert the new block at the root of the list

free( )

Root

Root

Before

After

conceptual graphic
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Freeing With a LIFO Policy (Case 4)

 Splice out predecessor and successor blocks, coalesce all 3 
memory blocks and insert the new block at the root of the list

free( )

Root

Root

Before

After

conceptual graphic



KAIST

12

Explicit List Summary
 Comparison to implicit list:
 Allocate is linear time in number of free blocks instead of all blocks

 Much faster when most of the memory is full 
 Slightly more complicated allocate and free since needs to splice blocks 

in and out of the list
 Some extra space for the links (2 extra  words needed for each block)

 Does this increase internal fragmentation?

 Most common use of linked lists is in conjunction with 
segregated free lists
 Keep multiple linked lists of different size classes, or possibly for 

different types of objects
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Keeping Track of Free Blocks
 Method 1: Implicit list using length—links all blocks

 Method 2: Explicit list among the free blocks using pointers

 Method 3: Segregated free list
 Different free lists for different size classes

 Method 4: Blocks sorted by size
 Can use a balanced tree (e.g. Red-Black tree) with pointers within each 

free block, and the length used as a key

5 4 26

5 4 26
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Today
 Explicit free lists
 Segregated free lists
 Garbage collection
 Memory-related perils and pitfalls
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Segregated List (Seglist) Allocators
 Each size class of blocks has its own free list

 Often have separate classes for each small size
 For larger sizes: One class for each two-power size

1-2

3

4

5-8

9-inf
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Seglist Allocator
 Given an array of free lists, each one for some size class

 To allocate a block of size n:
 Search appropriate free list for block of size m > n
 If an appropriate block is found:

 Split block and place fragment on appropriate list (optional)
 If no block is found, try next larger class
 Repeat until block is found

 If no block is found:
 Request additional heap memory from OS (using sbrk())
 Allocate block of n bytes from this new memory
 Place remainder as a single free block in largest size class.
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Seglist Allocator (cont.)
 To free a block:
 Coalesce and place on appropriate list (optional)

 Advantages of seglist allocators
 Higher throughput

 log time for power-of-two size classes
 Better memory utilization

 First-fit search of segregated free list approximates a best-fit 
search of entire heap.

 Extreme case: Giving each block its own size class is equivalent to 
best-fit.
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More Info on Allocators

 D. Knuth, “The Art of Computer Programming”, 2nd edition, 
Addison Wesley, 1973
 The classic reference on dynamic storage allocation

 Wilson et al, “Dynamic Storage Allocation: A Survey and 
Critical Review”, Proc. 1995 Int’l Workshop on Memory 
Management, Kinross, Scotland, Sept, 1995.
 Comprehensive survey
 Available from CS:APP student site (csapp.cs.cmu.edu)
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Today
 Explicit free lists
 Segregated free lists
 Garbage collection
 Memory-related perils and pitfalls
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Implicit Memory Management:
Garbage Collection
 Garbage collection: automatic reclamation of heap-allocated 

storage—application never has to free

 Common in functional languages, scripting languages, and 
modern object oriented languages:
 Lisp, ML, Java, Perl, Mathematica

 Variants (“conservative” garbage collectors) exist for C and C++
 However, cannot necessarily collect all garbage

void foo() {
int *p = malloc(128);
return; /* p block is now garbage */

}
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Garbage Collection
 How does the memory manager know when memory can be 

freed?
 In general we cannot know what is going to be used in the future since it 

depends on conditionals
 But we can tell that certain blocks cannot be used if there are no 

pointers to them

 Must make certain assumptions about pointers
 Memory manager can distinguish pointers from non-pointers
 All pointers point to the start of a block 
 Cannot hide pointers 

(e.g., by coercing them to an int, and then back again)
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Classical GC Algorithms
 Mark-and-sweep collection (McCarthy, 1960)
 Does not move blocks (unless you also “compact”)

 Reference counting (Collins, 1960)
 Does not move blocks (not discussed)

 Copying collection (Minsky, 1963)
 Moves blocks (not discussed)

 Generational Collectors (Lieberman and Hewitt, 1983)
 Collection based on lifetimes

 Most allocations become garbage very soon
 So focus reclamation work on zones of memory recently allocated

 For more information: 
Jones and Lin, “Garbage Collection: Algorithms for Automatic 
Dynamic Memory”, John Wiley & Sons, 1996.
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Memory as a Graph
 We view memory as a directed graph
 Each block is a node in the graph 
 Each pointer is an edge in the graph
 Locations not in the heap that contain pointers into the heap are called 

root nodes  (e.g. registers, locations on the stack, global variables)

Root nodes

Heap nodes

Not-reachable
(garbage)

reachable

A node (block) is reachable if there is a path from any root to that node.

Non-reachable nodes are garbage (cannot be needed by the application)
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Mark and Sweep Collecting
 Can build on top of malloc/free package
 Allocate using malloc until you “run out of space”

 When out of space:
 Use extra mark bit in the head of each block
 Mark: Start at roots and set mark bit on each reachable block
 Sweep: Scan all blocks and free blocks that are not marked

After mark Mark bit set

After sweep freefree

root

Before mark

Note: arrows 
here denote 

memory refs, not 
free list ptrs. 
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Assumptions For a Simple Implementation
 Application
 new(n):  returns pointer to new block with all locations cleared
 read(b,i): read location i of block b into register
 write(b,i,v): write v into location i of block b

 Each block will have a header word
 addressed as b[-1], for a block b
 Used for different purposes in different collectors

 Instructions used by the Garbage Collector
 is_ptr(p): determines whether p is a pointer
 length(b):  returns the length of block b, not including the header
 get_roots():  returns all the roots
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Mark and Sweep (cont.)

ptr mark(ptr p) {
if (!is_ptr(p)) return;        // do nothing if not pointer
if (markBitSet(p)) return;     // check if already marked
setMarkBit(p);                 // set the mark bit
for (i=0; i < length(p); i++)  // call mark on all words

mark(p[i]); //   in the block
return;

}      

Mark using depth-first traversal of the memory graph 

Sweep using lengths to find next block
ptr sweep(ptr p, ptr end) {

while (p < end) {
if markBitSet(p)

clearMarkBit();
else if (allocateBitSet(p)) 

free(p);
p += length(p);

}     



KAIST

27

Conservative Mark & Sweep in C
 A “conservative garbage collector” for C programs
 is_ptr() determines if a word is a pointer by checking if it points to 

an allocated block of memory
 But, in C pointers can point to the middle of a block

 So how to find the beginning of the block?
 Can use a balanced binary tree to keep track of all allocated blocks (key 

is start-of-block)
 Balanced-tree pointers can be stored in header (use two additional 

words)

Header
ptr

Head Data

Left Right

Size
Left: smaller addresses
Right: larger addresses
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Today
 Explicit free lists
 Segregated free lists
 Garbage collection
 Memory-related perils and pitfalls



KAIST

29

Memory-Related Perils and Pitfalls
 Dereferencing bad pointers
 Reading uninitialized memory
 Overwriting memory
 Referencing nonexistent variables
 Freeing blocks multiple times
 Referencing freed blocks
 Failing to free blocks
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C operators
Operators Associativity
()  []  ->  . left to right
!  ~  ++  -- +  - *  & (type) sizeof right to left
*  /  % left to right
+  - left to right
<<  >> left to right
<  <=  >  >= left to right
==  != left to right
& left to right
^ left to right
| left to right
&& left to right
|| left to right
?: right to left
= += -= *= /= %= &= ^= != <<= >>= right to left
, left to right

 ->, (), and [] have high precedence, with * and & just below
 Unary +, -, and * have higher precedence than binary forms

Source: K&R page 53
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C Pointer Declarations: Test Yourself!
int *p

int *p[13]

int *(p[13])

int **p

int (*p)[13]

int *f()

int (*f)()

int (*(*f())[13])()

int (*(*x[3])())[5]

p is a pointer to int

p is an array[13] of pointer to int

p is an array[13] of pointer to int

p is a pointer to a pointer to an int

p is a pointer to an array[13] of int

f is a function returning a pointer to int

f is a pointer to a function returning int

f is a function returning ptr to an array[13]
of pointers to functions returning int

x is an array[3] of pointers  to functions 
returning pointers to array[5] of ints

Source: K&R Sec 5.12
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Dereferencing Bad Pointers
 The classic scanf bug

int val;

...

scanf(“%d”, val);
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Reading Uninitialized Memory
 Assuming that heap data is initialized to zero

/* return y = Ax */
int *matvec(int **A, int *x) { 

int *y = malloc(N*sizeof(int));
int i, j;

for (i=0; i<N; i++)
for (j=0; j<N; j++)

y[i] += A[i][j]*x[j];
return y;

}
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Overwriting Memory
 Allocating the (possibly) wrong sized object

int **p;

p = malloc(N*sizeof(int));

for (i=0; i<N; i++) {
p[i] = malloc(M*sizeof(int));

}
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Overwriting Memory
 Off-by-one error

int **p;

p = malloc(N*sizeof(int *));

for (i=0; i<=N; i++) {
p[i] = malloc(M*sizeof(int));

}
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Overwriting Memory
 Not checking the max string size

 Basis for classic buffer overflow attacks

char s[8];
int i;

gets(s);  /* reads “123456789” from stdin */ 
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Overwriting Memory
 Misunderstanding pointer arithmetic

int *search(int *p, int val) {

while (*p && *p != val)
p += sizeof(int);

return p;
}
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Overwriting Memory
 Referencing a pointer instead of the object it points to

int *BinheapDelete(int **binheap, int *size) {
int *packet;
packet = binheap[0];
binheap[0] = binheap[*size - 1];
*size--;
Heapify(binheap, *size, 0);
return(packet);

}
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Referencing Nonexistent Variables
 Forgetting that local variables disappear when a function 

returns

int *foo () {
int val;

return &val;
}  
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Freeing Blocks Multiple Times
 Nasty!

x = malloc(N*sizeof(int));
<manipulate x>

free(x);

y = malloc(M*sizeof(int));
<manipulate y>

free(x);
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Referencing Freed Blocks
 Evil! 

x = malloc(N*sizeof(int));
<manipulate x>

free(x);
...

y = malloc(M*sizeof(int));
for (i=0; i<M; i++)

y[i] = x[i]++;
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Failing to Free Blocks (Memory Leaks)
 Slow, long-term killer! 

foo() {
int *x = malloc(N*sizeof(int));
...
return;

}
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Failing to Free Blocks (Memory Leaks)
 Freeing only part of a data structure

struct list {
int val;
struct list *next;

};

foo() {
struct list *head = malloc(sizeof(struct list));
head->val = 0;
head->next = NULL;
<create and manipulate the rest of the list>
...
free(head);
return;

}
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Dealing With Memory Bugs
 Conventional debugger (gdb)
 Good for finding  bad pointer dereferences
 Hard to detect the other memory bugs

 Debugging malloc (UToronto CSRI malloc)
 Wrapper around conventional malloc
 Detects memory bugs at malloc and free boundaries

 Memory overwrites that corrupt heap structures
 Some instances of freeing blocks multiple times
 Memory leaks

 Cannot detect all memory bugs
 Overwrites into the middle of allocated blocks
 Freeing block twice that has been reallocated in the interim
 Referencing freed blocks
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Dealing With Memory Bugs (cont.)
 Some malloc implementations contain checking code
 Linux glibc malloc: setenv MALLOC_CHECK_ 2
 FreeBSD: setenv MALLOC_OPTIONS AJR

 Binary translator:  valgrind (Linux), Purify
 Powerful debugging and analysis technique
 Rewrites text section of executable object file
 Can detect all errors as debugging malloc
 Can also check each individual reference at runtime

 Bad pointers
 Overwriting
 Referencing outside of allocated block

 Garbage collection (Boehm-Weiser Conservative GC)
 Let the system free blocks instead of the programmer.



EE485: Introduction to Environment and Tools for Modern Software Development
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Introduction to Sanitizers

Today’s topic

Understand memory errors

(Stack, Heap) Buffer overflow

Use after free

Double free

Memory leak

Understand address sanitizer to detect memory errors
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Segmentation fault

$ ./client1 -p 2000
---------------------------------------------------

Performance Test
---------------------------------------------------

[Test 1] Register 2000 users with RegisterCustomer()
[3]    8985 segmentation fault (core dumped)  ./client1 -p 2000
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Let’s try GDB!

(gdb) r -p 2000
Starting program: /home/insu/class/ee209-2021-fall-proj/assignments/cm/test/client1 -p 2000
---------------------------------------------------

Performance Test
---------------------------------------------------

[Test 1] Register 2000 users with RegisterCustomer()

Program received signal SIGSEGV, Segmentation fault.
__strcmp_sse2_unaligned () at ../sysdeps/x86_64/multiarch/strcmp-sse2-unaligned.S:31
31      ../sysdeps/x86_64/multiarch/strcmp-sse2-unaligned.S: No such file or directory
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Let’s try GDB!

(gdb) where
#0  __strcmp_sse2_unaligned () at ../sysdeps/x86_64/multiarch/strcmp-sse2-unaligned.S:31
#1  0x00005555555561b1 in SearchCustomerByID

(d=0x555555759670, id=0x7fffffffd9e0 "id1024") at customer_manager1.c:34
#2  0x00005555555564ac in RegisterCustomer

(d=0x555555759670, id=0x7fffffffd9e0 "id1024", name=0x7fffffffd970 "name1024", purchase=10)
at customer_manager1.c:112

#3  0x00005555555559e6 in PerformanceTest (num=2000) at client.c:400
#4  0x00005555555560e7 in main (argc=3, argv=0x7fffffffdb88) at client.c:520
(gdb) up
#1  0x00005555555561b1 in SearchCustomerByID

(d=0x555555759670, id=0x7fffffffd9e0 "id1024") at customer_manager1.c:34
warning: Source file is more recent than executable.
34                              if (strcmp(d->pArray[i].id, id) == 0)

Is this a bug?
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Bug is here!

34 if (strcmp(d->pArray[i].id, id) == 0)

……

137 struct UserInfo *pArr = realloc(d->pArray, 
138 (d->curArrSize + UNIT_ARRAY_SIZE)); 
139 if (pArr == NULL) {

Q: Why this is bug?
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Steps to use Address Sanitizer (ASan)

(a) Build with –fsanitize=address

(gdb) gcc –fsanitize=address client.c customer_manager1.c –o client-asan

Modify your program to use shadow memory (We will see)

(b) Run a program to trigger bugs

./client1-asan –p 2000
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ASan can help you discover bugs!

$./client1_asan -p 2000
---------------------------------------------------
Performance Test

---------------------------------------------------

[Test 1] Register 2000 users with RegisterCustomer()
=================================================================
==12995==ERROR: AddressSanitizer: heap-buffer-overflow on address 0x61d000000890 at pc 0x56353bd88e2d bp 0x7fff2bdaa9e0 sp 0x7fff2bdaa9d0
READ of size 8 at 0x61d000000890 thread T0

#0 0x56353bd88e2c in RegisterCustomer /home/insu/class/ee209-2021-fall-proj/assignments/assignment3/test/customer_manager1.c:152
#1 0x56353bd8760e in PerformanceTest /home/insu/class/ee209-2021-fall-proj/assignments/assignment3/test/client.c:400
#2 0x56353bd88134 in main /home/insu/class/ee209-2021-fall-proj/assignments/assignment3/test/client.c:520
#3 0x7f698618fbf6 in __libc_start_main (/lib/x86_64-linux-gnu/libc.so.6+0x21bf6)
#4 0x56353bd86429 in _start (/home/insu/class/ee209-2021-fall-proj/assignments/cm/test/client1_asan+0x2429)

0x61d000000890 is located 16 bytes to the right of 2048-byte region [0x61d000000080,0x61d000000880)
allocated by thread T0 here:

#0 0x7f698663df30 in realloc (/usr/lib/x86_64-linux-gnu/libasan.so.4+0xdef30)
#1 0x56353bd88ca7 in RegisterCustomer /home/insu/class/ee209-2021-fall-proj/assignments/assignment3/test/customer_manager1.c:137
#2 0x56353bd8760e in PerformanceTest /home/insu/class/ee209-2021-fall-proj/assignments/assignment3/test/client.c:400
#3 0x56353bd88134 in main /home/insu/class/ee209-2021-fall-proj/assignments/assignment3/test/client.c:520
#4 0x7f698618fbf6 in __libc_start_main (/lib/x86_64-linux-gnu/libc.so.6+0x21bf6)

34 if (strcmp(d->pArray[i].id, id) == 0)

……

137 struct UserInfo *pArr = realloc(d->pArray, 
138 (d->curArrSize + UNIT_ARRAY_SIZE)); 
139 if (pArr == NULL) {
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ASan is implemented using shadow memory + redzone

WWDC2015, “Advanced Debugging and the Address Sanitizer”
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ASan is implemented using shadow memory + redzone
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ASan is implemented using shadow memory + redzone
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Example: Shadow memory 
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Memory errors that ASan can catch

(Global, Stack, Heap) overflow: 

Use after free

int* a = (int*)malloc(16);

for (int i = 0; i < 16; i++)
a[i] = 0;

int *a = (int*)malloc(16);
... 
free(a); 
...
a[0] = 1;

Double free

Memory leak

int* a = (int*)malloc(16);
... 
free(a); 
...
free(a); 

int* a = (int*)malloc(16);
... 
a = (int*)malloc(16);
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Address Sanitizer vs Valgrind

Advantages of asan

Non-heap bugs: Stack overflow, Global overflow, …

Much faster: 2x Asan, 20x Valgrind

Multi-threaded support

Disadvantage

Re-compilation required (i.e., Source code is required )

Valgrind can detect memory bugs in compiled libraries.  

But asan only can detect bugs if it is compiled with the option

Cannot detect uninitialized memory (NOTE: clang has MemorySanitizer)
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