
EE309 Advanced Programming
Techniques for EE

Lecture 7: Dynamic memory
allocation (Advanced)

INSU YUN (윤인수)

School of Electrical Engineering, KAIST

[Slides from 15-213: Introduction to Computer Systems at CMU]

KAIST

2

Today
 Explicit free lists
 Segregated free lists
 Garbage collection
 Memory-related perils and pitfalls

KAIST

3

Keeping Track of Free Blocks
 Method 1: Implicit free list using length—links all blocks

 Method 2: Explicit free list among the free blocks using pointers

 Method 3: Segregated free list
 Different free lists for different size classes

 Method 4: Blocks sorted by size
 Can use a balanced tree (e.g. Red-Black tree) with pointers within each

free block, and the length used as a key

5 4 26

5 4 26

KAIST

4

Explicit Free Lists

 Maintain list(s) of free blocks, not all blocks
 The “next” free block could be anywhere

 So we need to store forward/back pointers, not just sizes
 Still need boundary tags for coalescing
 Luckily we track only free blocks, so we can use payload area

Size

Payload and
padding

a

Size a

Size a

Size a

Next

Prev

Allocated (as before) Free

KAIST

5

Explicit Free Lists
 Logically:

 Physically: blocks can be in any order

A B C

4 4 4 4 66 44 4 4

Forward (next) links

Back (prev) links

A B

C

KAIST

6

Allocating From Explicit Free Lists

Before

After

= malloc(…)

(with splitting)

conceptual graphic

KAIST

7

Freeing With Explicit Free Lists
 Insertion policy: Where in the free list do you put a newly

freed block?
 LIFO (last-in-first-out) policy

 Insert freed block at the beginning of the free list
 Pro: simple and constant time
 Con: studies suggest fragmentation is worse than address ordered

 Address-ordered policy
 Insert freed blocks so that free list blocks are always in address

order:
addr(prev) < addr(curr) < addr(next)

 Con: requires search
 Pro: studies suggest fragmentation is lower than LIFO

KAIST

8

Freeing With a LIFO Policy (Case 1)

 Insert the freed block at the root of the list

free()

Root

Root

Before

After

conceptual graphic

KAIST

9

Freeing With a LIFO Policy (Case 2)

 Splice out predecessor block, coalesce both memory blocks,
and insert the new block at the root of the list

free()

Root

Root

Before

After

conceptual graphic

KAIST

10

Freeing With a LIFO Policy (Case 3)

 Splice out successor block, coalesce both memory blocks and
insert the new block at the root of the list

free()

Root

Root

Before

After

conceptual graphic

KAIST

11

Freeing With a LIFO Policy (Case 4)

 Splice out predecessor and successor blocks, coalesce all 3
memory blocks and insert the new block at the root of the list

free()

Root

Root

Before

After

conceptual graphic

KAIST

12

Explicit List Summary
 Comparison to implicit list:
 Allocate is linear time in number of free blocks instead of all blocks

 Much faster when most of the memory is full
 Slightly more complicated allocate and free since needs to splice blocks

in and out of the list
 Some extra space for the links (2 extra words needed for each block)

 Does this increase internal fragmentation?

 Most common use of linked lists is in conjunction with
segregated free lists
 Keep multiple linked lists of different size classes, or possibly for

different types of objects

KAIST

13

Keeping Track of Free Blocks
 Method 1: Implicit list using length—links all blocks

 Method 2: Explicit list among the free blocks using pointers

 Method 3: Segregated free list
 Different free lists for different size classes

 Method 4: Blocks sorted by size
 Can use a balanced tree (e.g. Red-Black tree) with pointers within each

free block, and the length used as a key

5 4 26

5 4 26

KAIST

14

Today
 Explicit free lists
 Segregated free lists
 Garbage collection
 Memory-related perils and pitfalls

KAIST

15

Segregated List (Seglist) Allocators
 Each size class of blocks has its own free list

 Often have separate classes for each small size
 For larger sizes: One class for each two-power size

1-2

3

4

5-8

9-inf

KAIST

16

Seglist Allocator
 Given an array of free lists, each one for some size class

 To allocate a block of size n:
 Search appropriate free list for block of size m > n
 If an appropriate block is found:

 Split block and place fragment on appropriate list (optional)
 If no block is found, try next larger class
 Repeat until block is found

 If no block is found:
 Request additional heap memory from OS (using sbrk())
 Allocate block of n bytes from this new memory
 Place remainder as a single free block in largest size class.

KAIST

17

Seglist Allocator (cont.)
 To free a block:
 Coalesce and place on appropriate list (optional)

 Advantages of seglist allocators
 Higher throughput

 log time for power-of-two size classes
 Better memory utilization

 First-fit search of segregated free list approximates a best-fit
search of entire heap.

 Extreme case: Giving each block its own size class is equivalent to
best-fit.

KAIST

18

More Info on Allocators

 D. Knuth, “The Art of Computer Programming”, 2nd edition,
Addison Wesley, 1973
 The classic reference on dynamic storage allocation

 Wilson et al, “Dynamic Storage Allocation: A Survey and
Critical Review”, Proc. 1995 Int’l Workshop on Memory
Management, Kinross, Scotland, Sept, 1995.
 Comprehensive survey
 Available from CS:APP student site (csapp.cs.cmu.edu)

KAIST

19

Today
 Explicit free lists
 Segregated free lists
 Garbage collection
 Memory-related perils and pitfalls

KAIST

20

Implicit Memory Management:
Garbage Collection
 Garbage collection: automatic reclamation of heap-allocated

storage—application never has to free

 Common in functional languages, scripting languages, and
modern object oriented languages:
 Lisp, ML, Java, Perl, Mathematica

 Variants (“conservative” garbage collectors) exist for C and C++
 However, cannot necessarily collect all garbage

void foo() {
int *p = malloc(128);
return; /* p block is now garbage */

}

KAIST

21

Garbage Collection
 How does the memory manager know when memory can be

freed?
 In general we cannot know what is going to be used in the future since it

depends on conditionals
 But we can tell that certain blocks cannot be used if there are no

pointers to them

 Must make certain assumptions about pointers
 Memory manager can distinguish pointers from non-pointers
 All pointers point to the start of a block
 Cannot hide pointers

(e.g., by coercing them to an int, and then back again)

KAIST

22

Classical GC Algorithms
 Mark-and-sweep collection (McCarthy, 1960)
 Does not move blocks (unless you also “compact”)

 Reference counting (Collins, 1960)
 Does not move blocks (not discussed)

 Copying collection (Minsky, 1963)
 Moves blocks (not discussed)

 Generational Collectors (Lieberman and Hewitt, 1983)
 Collection based on lifetimes

 Most allocations become garbage very soon
 So focus reclamation work on zones of memory recently allocated

 For more information:
Jones and Lin, “Garbage Collection: Algorithms for Automatic
Dynamic Memory”, John Wiley & Sons, 1996.

KAIST

23

Memory as a Graph
 We view memory as a directed graph
 Each block is a node in the graph
 Each pointer is an edge in the graph
 Locations not in the heap that contain pointers into the heap are called

root nodes (e.g. registers, locations on the stack, global variables)

Root nodes

Heap nodes

Not-reachable
(garbage)

reachable

A node (block) is reachable if there is a path from any root to that node.

Non-reachable nodes are garbage (cannot be needed by the application)

KAIST

24

Mark and Sweep Collecting
 Can build on top of malloc/free package
 Allocate using malloc until you “run out of space”

 When out of space:
 Use extra mark bit in the head of each block
 Mark: Start at roots and set mark bit on each reachable block
 Sweep: Scan all blocks and free blocks that are not marked

After mark Mark bit set

After sweep freefree

root

Before mark

Note: arrows
here denote

memory refs, not
free list ptrs.

KAIST

25

Assumptions For a Simple Implementation
 Application
 new(n): returns pointer to new block with all locations cleared
 read(b,i): read location i of block b into register
 write(b,i,v): write v into location i of block b

 Each block will have a header word
 addressed as b[-1], for a block b
 Used for different purposes in different collectors

 Instructions used by the Garbage Collector
 is_ptr(p): determines whether p is a pointer
 length(b): returns the length of block b, not including the header
 get_roots(): returns all the roots

KAIST

26

Mark and Sweep (cont.)

ptr mark(ptr p) {
if (!is_ptr(p)) return; // do nothing if not pointer
if (markBitSet(p)) return; // check if already marked
setMarkBit(p); // set the mark bit
for (i=0; i < length(p); i++) // call mark on all words

mark(p[i]); // in the block
return;

}

Mark using depth-first traversal of the memory graph

Sweep using lengths to find next block
ptr sweep(ptr p, ptr end) {

while (p < end) {
if markBitSet(p)

clearMarkBit();
else if (allocateBitSet(p))

free(p);
p += length(p);

}

KAIST

27

Conservative Mark & Sweep in C
 A “conservative garbage collector” for C programs
 is_ptr() determines if a word is a pointer by checking if it points to

an allocated block of memory
 But, in C pointers can point to the middle of a block

 So how to find the beginning of the block?
 Can use a balanced binary tree to keep track of all allocated blocks (key

is start-of-block)
 Balanced-tree pointers can be stored in header (use two additional

words)

Header
ptr

Head Data

Left Right

Size
Left: smaller addresses
Right: larger addresses

KAIST

28

Today
 Explicit free lists
 Segregated free lists
 Garbage collection
 Memory-related perils and pitfalls

KAIST

29

Memory-Related Perils and Pitfalls
 Dereferencing bad pointers
 Reading uninitialized memory
 Overwriting memory
 Referencing nonexistent variables
 Freeing blocks multiple times
 Referencing freed blocks
 Failing to free blocks

KAIST

30

C operators
Operators Associativity
() [] -> . left to right
! ~ ++ -- + - * & (type) sizeof right to left
* / % left to right
+ - left to right
<< >> left to right
< <= > >= left to right
== != left to right
& left to right
^ left to right
| left to right
&& left to right
|| left to right
?: right to left
= += -= *= /= %= &= ^= != <<= >>= right to left
, left to right

 ->, (), and [] have high precedence, with * and & just below
 Unary +, -, and * have higher precedence than binary forms

Source: K&R page 53

KAIST

31

C Pointer Declarations: Test Yourself!
int *p

int *p[13]

int *(p[13])

int **p

int (*p)[13]

int *f()

int (*f)()

int (*(*f())[13])()

int (*(*x[3])())[5]

p is a pointer to int

p is an array[13] of pointer to int

p is an array[13] of pointer to int

p is a pointer to a pointer to an int

p is a pointer to an array[13] of int

f is a function returning a pointer to int

f is a pointer to a function returning int

f is a function returning ptr to an array[13]
of pointers to functions returning int

x is an array[3] of pointers to functions
returning pointers to array[5] of ints

Source: K&R Sec 5.12

KAIST

32

Dereferencing Bad Pointers
 The classic scanf bug

int val;

...

scanf(“%d”, val);

KAIST

33

Reading Uninitialized Memory
 Assuming that heap data is initialized to zero

/* return y = Ax */
int *matvec(int **A, int *x) {

int *y = malloc(N*sizeof(int));
int i, j;

for (i=0; i<N; i++)
for (j=0; j<N; j++)

y[i] += A[i][j]*x[j];
return y;

}

KAIST

34

Overwriting Memory
 Allocating the (possibly) wrong sized object

int **p;

p = malloc(N*sizeof(int));

for (i=0; i<N; i++) {
p[i] = malloc(M*sizeof(int));

}

KAIST

35

Overwriting Memory
 Off-by-one error

int **p;

p = malloc(N*sizeof(int *));

for (i=0; i<=N; i++) {
p[i] = malloc(M*sizeof(int));

}

KAIST

36

Overwriting Memory
 Not checking the max string size

 Basis for classic buffer overflow attacks

char s[8];
int i;

gets(s); /* reads “123456789” from stdin */

KAIST

37

Overwriting Memory
 Misunderstanding pointer arithmetic

int *search(int *p, int val) {

while (*p && *p != val)
p += sizeof(int);

return p;
}

KAIST

38

Overwriting Memory
 Referencing a pointer instead of the object it points to

int *BinheapDelete(int **binheap, int *size) {
int *packet;
packet = binheap[0];
binheap[0] = binheap[*size - 1];
*size--;
Heapify(binheap, *size, 0);
return(packet);

}

KAIST

39

Referencing Nonexistent Variables
 Forgetting that local variables disappear when a function

returns

int *foo () {
int val;

return &val;
}

KAIST

40

Freeing Blocks Multiple Times
 Nasty!

x = malloc(N*sizeof(int));
<manipulate x>

free(x);

y = malloc(M*sizeof(int));
<manipulate y>

free(x);

KAIST

41

Referencing Freed Blocks
 Evil!

x = malloc(N*sizeof(int));
<manipulate x>

free(x);
...

y = malloc(M*sizeof(int));
for (i=0; i<M; i++)

y[i] = x[i]++;

KAIST

42

Failing to Free Blocks (Memory Leaks)
 Slow, long-term killer!

foo() {
int *x = malloc(N*sizeof(int));
...
return;

}

KAIST

43

Failing to Free Blocks (Memory Leaks)
 Freeing only part of a data structure

struct list {
int val;
struct list *next;

};

foo() {
struct list *head = malloc(sizeof(struct list));
head->val = 0;
head->next = NULL;
<create and manipulate the rest of the list>
...
free(head);
return;

}

KAIST

44

Dealing With Memory Bugs
 Conventional debugger (gdb)
 Good for finding bad pointer dereferences
 Hard to detect the other memory bugs

 Debugging malloc (UToronto CSRI malloc)
 Wrapper around conventional malloc
 Detects memory bugs at malloc and free boundaries

 Memory overwrites that corrupt heap structures
 Some instances of freeing blocks multiple times
 Memory leaks

 Cannot detect all memory bugs
 Overwrites into the middle of allocated blocks
 Freeing block twice that has been reallocated in the interim
 Referencing freed blocks

KAIST

45

Dealing With Memory Bugs (cont.)
 Some malloc implementations contain checking code
 Linux glibc malloc: setenv MALLOC_CHECK_ 2
 FreeBSD: setenv MALLOC_OPTIONS AJR

 Binary translator: valgrind (Linux), Purify
 Powerful debugging and analysis technique
 Rewrites text section of executable object file
 Can detect all errors as debugging malloc
 Can also check each individual reference at runtime

 Bad pointers
 Overwriting
 Referencing outside of allocated block

 Garbage collection (Boehm-Weiser Conservative GC)
 Let the system free blocks instead of the programmer.

EE485: Introduction to Environment and Tools for Modern Software Development

47

Introduction to Sanitizers

Today’s topic

Understand memory errors

(Stack, Heap) Buffer overflow

Use after free

Double free

Memory leak

Understand address sanitizer to detect memory errors

48

Segmentation fault

$./client1 -p 2000

Performance Test

[Test 1] Register 2000 users with RegisterCustomer()
[3] 8985 segmentation fault (core dumped) ./client1 -p 2000

49

Let’s try GDB!

(gdb) r -p 2000
Starting program: /home/insu/class/ee209-2021-fall-proj/assignments/cm/test/client1 -p 2000

Performance Test

[Test 1] Register 2000 users with RegisterCustomer()

Program received signal SIGSEGV, Segmentation fault.
__strcmp_sse2_unaligned () at ../sysdeps/x86_64/multiarch/strcmp-sse2-unaligned.S:31
31 ../sysdeps/x86_64/multiarch/strcmp-sse2-unaligned.S: No such file or directory

50

Let’s try GDB!

(gdb) where
#0 __strcmp_sse2_unaligned () at ../sysdeps/x86_64/multiarch/strcmp-sse2-unaligned.S:31
#1 0x00005555555561b1 in SearchCustomerByID

(d=0x555555759670, id=0x7fffffffd9e0 "id1024") at customer_manager1.c:34
#2 0x00005555555564ac in RegisterCustomer

(d=0x555555759670, id=0x7fffffffd9e0 "id1024", name=0x7fffffffd970 "name1024", purchase=10)
at customer_manager1.c:112

#3 0x00005555555559e6 in PerformanceTest (num=2000) at client.c:400
#4 0x00005555555560e7 in main (argc=3, argv=0x7fffffffdb88) at client.c:520
(gdb) up
#1 0x00005555555561b1 in SearchCustomerByID

(d=0x555555759670, id=0x7fffffffd9e0 "id1024") at customer_manager1.c:34
warning: Source file is more recent than executable.
34 if (strcmp(d->pArray[i].id, id) == 0)

Is this a bug?

51

Bug is here!

34 if (strcmp(d->pArray[i].id, id) == 0)

……

137 struct UserInfo *pArr = realloc(d->pArray,
138 (d->curArrSize + UNIT_ARRAY_SIZE));
139 if (pArr == NULL) {

Q: Why this is bug?

52

Steps to use Address Sanitizer (ASan)

(a) Build with –fsanitize=address

(gdb) gcc –fsanitize=address client.c customer_manager1.c –o client-asan

Modify your program to use shadow memory (We will see)

(b) Run a program to trigger bugs

./client1-asan –p 2000

53

ASan can help you discover bugs!

$./client1_asan -p 2000

Performance Test

[Test 1] Register 2000 users with RegisterCustomer()
===
==12995==ERROR: AddressSanitizer: heap-buffer-overflow on address 0x61d000000890 at pc 0x56353bd88e2d bp 0x7fff2bdaa9e0 sp 0x7fff2bdaa9d0
READ of size 8 at 0x61d000000890 thread T0

#0 0x56353bd88e2c in RegisterCustomer /home/insu/class/ee209-2021-fall-proj/assignments/assignment3/test/customer_manager1.c:152
#1 0x56353bd8760e in PerformanceTest /home/insu/class/ee209-2021-fall-proj/assignments/assignment3/test/client.c:400
#2 0x56353bd88134 in main /home/insu/class/ee209-2021-fall-proj/assignments/assignment3/test/client.c:520
#3 0x7f698618fbf6 in __libc_start_main (/lib/x86_64-linux-gnu/libc.so.6+0x21bf6)
#4 0x56353bd86429 in _start (/home/insu/class/ee209-2021-fall-proj/assignments/cm/test/client1_asan+0x2429)

0x61d000000890 is located 16 bytes to the right of 2048-byte region [0x61d000000080,0x61d000000880)
allocated by thread T0 here:

#0 0x7f698663df30 in realloc (/usr/lib/x86_64-linux-gnu/libasan.so.4+0xdef30)
#1 0x56353bd88ca7 in RegisterCustomer /home/insu/class/ee209-2021-fall-proj/assignments/assignment3/test/customer_manager1.c:137
#2 0x56353bd8760e in PerformanceTest /home/insu/class/ee209-2021-fall-proj/assignments/assignment3/test/client.c:400
#3 0x56353bd88134 in main /home/insu/class/ee209-2021-fall-proj/assignments/assignment3/test/client.c:520
#4 0x7f698618fbf6 in __libc_start_main (/lib/x86_64-linux-gnu/libc.so.6+0x21bf6)

34 if (strcmp(d->pArray[i].id, id) == 0)

……

137 struct UserInfo *pArr = realloc(d->pArray,
138 (d->curArrSize + UNIT_ARRAY_SIZE));
139 if (pArr == NULL) {

54

ASan is implemented using shadow memory + redzone

WWDC2015, “Advanced Debugging and the Address Sanitizer”

55

ASan is implemented using shadow memory + redzone

56

ASan is implemented using shadow memory + redzone

57

Example: Shadow memory

58

Memory errors that ASan can catch

(Global, Stack, Heap) overflow:

Use after free

int* a = (int*)malloc(16);

for (int i = 0; i < 16; i++)
a[i] = 0;

int *a = (int*)malloc(16);
...
free(a);
...
a[0] = 1;

Double free

Memory leak

int* a = (int*)malloc(16);
...
free(a);
...
free(a);

int* a = (int*)malloc(16);
...
a = (int*)malloc(16);

59

Address Sanitizer vs Valgrind

Advantages of asan

Non-heap bugs: Stack overflow, Global overflow, …

Much faster: 2x Asan, 20x Valgrind

Multi-threaded support

Disadvantage

Re-compilation required (i.e., Source code is required)

Valgrind can detect memory bugs in compiled libraries.

But asan only can detect bugs if it is compiled with the option

Cannot detect uninitialized memory (NOTE: clang has MemorySanitizer)

	EE309 Advanced Programming Techniques for EE��Lecture 7: Dynamic memory allocation (Advanced)
	Today
	Keeping Track of Free Blocks
	Explicit Free Lists
	Explicit Free Lists
	Allocating From Explicit Free Lists
	Freeing With Explicit Free Lists
	Freeing With a LIFO Policy (Case 1)
	Freeing With a LIFO Policy (Case 2)
	Freeing With a LIFO Policy (Case 3)
	Freeing With a LIFO Policy (Case 4)
	Explicit List Summary
	Keeping Track of Free Blocks
	Today
	Segregated List (Seglist) Allocators
	Seglist Allocator
	Seglist Allocator (cont.)
	More Info on Allocators
	Today
	Implicit Memory Management:�Garbage Collection
	Garbage Collection
	Classical GC Algorithms
	Memory as a Graph
	Mark and Sweep Collecting
	Assumptions For a Simple Implementation
	Mark and Sweep (cont.)
	Conservative Mark & Sweep in C
	Today
	Memory-Related Perils and Pitfalls
	C operators
	C Pointer Declarations: Test Yourself!
	Dereferencing Bad Pointers
	Reading Uninitialized Memory
	Overwriting Memory
	Overwriting Memory
	Overwriting Memory
	Overwriting Memory
	Overwriting Memory
	Referencing Nonexistent Variables
	Freeing Blocks Multiple Times
	Referencing Freed Blocks
	Failing to Free Blocks (Memory Leaks)
	Failing to Free Blocks (Memory Leaks)
	Dealing With Memory Bugs
	Dealing With Memory Bugs (cont.)
	Lecture 8: Address Sanitizer
	Introduction to Sanitizers
	Segmentation fault
	Let’s try GDB!
	Let’s try GDB!
	Bug is here!
	Steps to use Address Sanitizer (ASan)
	ASan can help you discover bugs!
	ASan is implemented using shadow memory + redzone
	ASan is implemented using shadow memory + redzone
	ASan is implemented using shadow memory + redzone
	Example: Shadow memory
	Memory errors that ASan can catch
	Address Sanitizer vs Valgrind�

