
EE309 Advanced Programming
Techniques for EE

Lecture 13: Network
programming 2

INSU YUN (윤인수)

School of Electrical Engineering, KAIST

[Slides from 15-213: Introduction to Computer Systems at CMU]

KAIST

2

Today
 Material we didn’t get to yesterday
 Transmitting data using sockets
 Socket addresses
 getaddrinfo

 Setting up connections
 Application protocol example: HTTP

KAIST

3

Client Server

Sockets
 What is a socket?
 To the kernel, a socket is an endpoint of communication
 To an application, a socket is a file descriptor that lets the

application read/write from/to the network
 Using the FD abstraction lets you reuse code & interfaces

 Clients and servers communicate with each other by
reading from and writing to socket descriptors

 The main distinction between regular file I/O and socket
I/O is how the application “opens” the socket descriptors

clientfd serverfd

KAIST

4

Socket Programming Example
 Echo server and client
 Server
 Accepts connection request
 Repeats back lines as they are typed

 Client
 Requests connection to server
 Repeatedly:

 Read line from terminal
 Send to server
 Read reply from server
 Print line to terminal

KAIST

5

5. Drop client
4. Disconnect client

3. Exchange
data

2. Start client 1. Start server

Client /
Server
Session

Echo
Server

+ Client
Structure

Client Server

socket read

socket write
socket read

terminal write

terminal read
socket write

Connection
request

socket read

close

close EOF

accept

open_listenfd

open_clientfd

Await connection
request from client

KAIST

6

Recall: Unbuffered RIO Input/Output
 Same interface as Unix read and write
 Especially useful for transferring data on network sockets

 rio_readn returns short count only if it encounters EOF
 Only use it when you know how many bytes to read

 rio_writen never returns a short count
 Calls to rio_readn and rio_writen can be interleaved arbitrarily on

the same descriptor

#include "csapp.h"

ssize_t rio_readn(int fd, void *usrbuf, size_t n);
ssize_t rio_writen(int fd, void *usrbuf, size_t n);

Return: num. bytes transferred if OK, 0 on EOF (rio_readn only), -1 on error

KAIST

7

Recall: Buffered RIO Input Functions
 Efficiently read text lines and binary data from a file partially

cached in an internal memory buffer

 rio_readlineb reads a text line of up to maxlen bytes from file
fd and stores the line in usrbuf
 Especially useful for reading text lines from network sockets

 Stopping conditions
 maxlen bytes read
 EOF encountered
 Newline (‘\n’) encountered

#include "csapp.h"

void rio_readinitb(rio_t *rp, int fd);

ssize_t rio_readlineb(rio_t *rp, void *usrbuf, size_t maxlen);
ssize_t rio_readnb(rio_t *rp, void *usrbuf, size_t n);

Return: num. bytes read if OK, 0 on EOF, -1 on error

KAIST

8

Today: Unix I/O, C Standard I/O, and RIO
 Two incompatible libraries building on Unix I/O
 Robust I/O (RIO): 213 special wrappers

good coding practice: handles error checking, signals, and
“short counts”

Unix I/O functions
(accessed via system calls)

Standard I/O
functions

C application program

fopen fdopen
fread fwrite
fscanf fprintf
sscanf sprintf
fgets fputs
fflush fseek
fclose

open read
write lseek
stat close

rio_readn
rio_writen
rio_readinitb
rio_readlineb
rio_readnb

RIO
functions

KAIST

9

The RIO Package (213/CS:APP Package)
 RIO is a set of wrappers that provide efficient and robust I/O

in apps, such as network programs that are subject to short
counts

 RIO provides two different kinds of functions
 Unbuffered input and output of binary data

 rio_readn and rio_writen
 Buffered input of text lines and binary data

 rio_readlineb and rio_readnb
 Buffered RIO routines are thread-safe and can be interleaved

arbitrarily on the same descriptor

 Download from http://csapp.cs.cmu.edu/3e/code.html
 src/csapp.c and include/csapp.h

http://csapp.cs.cmu.edu/public/code.html

KAIST

10

Implementation of rio_readn
/*
* rio_readn - Robustly read n bytes (unbuffered)
*/
ssize_t rio_readn(int fd, void *usrbuf, size_t n)
{

size_t nleft = n;
ssize_t nread;
char *bufp = usrbuf;

while (nleft > 0) {
if ((nread = read(fd, bufp, nleft)) < 0) {

if (errno == EINTR) /* Interrupted by sig handler return */
nread = 0; /* and call read() again */

else
return -1; /* errno set by read() */

}
else if (nread == 0)

break; /* EOF */
nleft -= nread;
bufp += nread;

}
return (n - nleft); /* Return >= 0 */

} csapp.c

KAIST

11

Echo Client: Main Routine
#include "csapp.h"

int main(int argc, char **argv)
{

int clientfd;
char *host, *port, buf[MAXLINE];
rio_t rio;

host = argv[1];
port = argv[2];

clientfd = Open_clientfd(host, port);
Rio_readinitb(&rio, clientfd);

while (Fgets(buf, MAXLINE, stdin) != NULL) {
Rio_writen(clientfd, buf, strlen(buf));
Rio_readlineb(&rio, buf, MAXLINE);
Fputs(buf, stdout);

}
Close(clientfd);
exit(0);

} echoclient.c

KAIST

12

Echo Server: echo function

void echo(int connfd)
{

size_t n;
char buf[MAXLINE];
rio_t rio;

Rio_readinitb(&rio, connfd);
while((n = Rio_readlineb(&rio, buf, MAXLINE)) != 0) {

printf("server received %d bytes\n", (int)n);
Rio_writen(connfd, buf, n);

}
}

 The server uses RIO to read and echo text lines until EOF
(end-of-file) condition is encountered.
 EOF condition caused by client calling close(clientfd)

echo.c

KAIST

13

Socket Address Structures
 Generic socket address:
 For address arguments to connect, bind, and accept (next lecture)
 In C++ this would be an abstract base class
 For casting convenience, we adopt the Stevens convention:
typedef struct sockaddr SA;

struct sockaddr {
uint16_t sa_family; /* Protocol family */
char sa_data[14]; /* Address data */

};

sa_family

Family Specific

KAIST

14

Socket Address Structures
 Internet (IPv4) specific socket address:
 Must cast (struct sockaddr_in *) to (struct sockaddr *)

for functions that take socket address arguments.

0 0 0 0 0 0 0 0
sa_family

Family Specific

struct sockaddr_in {
uint16_t sin_family; /* Protocol family (always AF_INET) */
uint16_t sin_port; /* Port num in network byte order */
struct in_addr sin_addr; /* IP addr in network byte order */
unsigned char sin_zero[8]; /* Pad to sizeof(struct sockaddr) */

};

sin_port

AF_INET

sin_addr

sin_family

KAIST

15

Host and Service Conversion: getaddrinfo

 getaddrinfo is the modern way to convert string
representations of hostnames, host addresses, ports, and
service names to socket address structures.
 Replaces obsolete gethostbyname and getservbyname funcs.

 Advantages:
 Reentrant (can be safely used by threaded programs).
 Allows us to write portable protocol-independent code

 Works with both IPv4 and IPv6

 Disadvantages
 Somewhat complex
 Fortunately, a small number of usage patterns suffice in most cases.

KAIST

16

Host and Service Conversion: getaddrinfo

 Given host and service, getaddrinfo returns result
that points to a linked list of addrinfo structs, each of which
points to a corresponding socket address struct, and which
contains arguments for the sockets interface functions.

 Helper functions:
 freeadderinfo frees the entire linked list.
 gai_strerror converts error code to an error message.

int getaddrinfo(const char *host, /* Hostname or address */
const char *service, /* Port or service name */
const struct addrinfo *hints,/* Input parameters */
struct addrinfo **result); /* Output linked list */

void freeaddrinfo(struct addrinfo *result); /* Free linked list */

const char *gai_strerror(int errcode); /* Return error msg */

KAIST

17

Linked List Returned by getaddrinfo

ai_canonname

result

ai_addr
ai_next

addrinfo structs

Socket address structs

NULL
ai_addr
ai_next

NULL
ai_addr
NULL

KAIST

18

addrinfo Struct

 Each addrinfo struct returned by getaddrinfo contains
arguments that can be passed directly to socket function.

 Also points to a socket address struct that can be passed
directly to connect and bind functions.

(socket, connect, bind to be discussed next)

struct addrinfo {
int ai_flags; /* Hints argument flags */
int ai_family; /* First arg to socket function */
int ai_socktype; /* Second arg to socket function */
int ai_protocol; /* Third arg to socket function */
char *ai_canonname; /* Canonical host name */
size_t ai_addrlen; /* Size of ai_addr struct */
struct sockaddr *ai_addr; /* Ptr to socket address structure */
struct addrinfo *ai_next; /* Ptr to next item in linked list */

};

KAIST

19

Host and Service Conversion: getnameinfo

 getnameinfo is the inverse of getaddrinfo, converting a
socket address to the corresponding host and service.
 Replaces obsolete gethostbyaddr and getservbyport funcs.
 Reentrant and protocol independent.

int getnameinfo(const SA *sa, socklen_t salen, /* In: socket addr */
char *host, size_t hostlen, /* Out: host */
char *serv, size_t servlen, /* Out: service */
int flags); /* optional flags */

KAIST

20

Conversion Example

#include "csapp.h"

int main(int argc, char **argv)
{

struct addrinfo *p, *listp, hints;
char buf[MAXLINE];
int rc, flags;

/* Get a list of addrinfo records */
memset(&hints, 0, sizeof(struct addrinfo));
hints.ai_family = AF_INET; /* IPv4 only */
hints.ai_socktype = SOCK_STREAM; /* Connections only */
if ((rc = getaddrinfo(argv[1], NULL, &hints, &listp)) != 0) {

fprintf(stderr, "getaddrinfo error: %s\n", gai_strerror(rc));
exit(1);

}
hostinfo.c

KAIST

21

Conversion Example (cont)

/* Walk the list and display each IP address */
flags = NI_NUMERICHOST; /* Display address instead of name */
for (p = listp; p; p = p->ai_next) {

Getnameinfo(p->ai_addr, p->ai_addrlen,
buf, MAXLINE, NULL, 0, flags);

printf("%s\n", buf);
}

/* Clean up */
Freeaddrinfo(listp);

exit(0);
} hostinfo.c

KAIST

22

Running hostinfo

whaleshark> ./hostinfo localhost
127.0.0.1

whaleshark> ./hostinfo whaleshark.ics.cs.cmu.edu
128.2.210.175

whaleshark> ./hostinfo twitter.com
199.16.156.230
199.16.156.38
199.16.156.102
199.16.156.198

whaleshark> ./hostinfo google.com
172.217.15.110
2607:f8b0:4004:802::200e

KAIST

23

Today
 Questions from yesterday
 Material we didn’t get to yesterday
 Transmitting data using sockets
 Socket addresses
 getaddrinfo

 Setting up connections
 Application protocol example: HTTP

KAIST

24

Start client Start server

Client /
Server
Session

Client Server

socket socket

bind

listen

rio_readlineb

rio_writenrio_readlineb

rio_writen

Connection
request

rio_readlineb

close

close EOF

Await connection
request from
next client

open_listenfd

open_clientfd

acceptconnect

getaddrinfogetaddrinfo

KAIST

25

Review: getaddrinfo

ai_canonname

result

ai_addr
ai_next

addrinfo structs

Socket address structs

NULL
ai_addr
ai_next

NULL
ai_addr
NULL

 getaddrinfo converts string representations of hostnames,
host addresses, ports, service names to socket address structures

SA list

KAIST

26

Start client Start server

Client /
Server
Session

Client Server

socket socket

bind

listen

rio_readlineb

rio_writenrio_readlineb

rio_writen

Connection
request

rio_readlineb

close

close EOF

Await connection
request from
next client

open_listenfd

open_clientfd

acceptconnect

getaddrinfogetaddrinfo

SA listSA list

KAIST

27

Sockets Interface: socket

 Clients and servers use the socket function to create a
socket descriptor:

 Example:

 Example:

int socket(int domain, int type, int protocol)

int clientfd = socket(AF_INET, SOCK_STREAM, 0);

Indicates that we are using
32-bit IPV4 addresses

Indicates that the socket
will be the end point of a
reliable (TCP) connection

Protocol specific!

int clientfd = socket(ai->ai_family, ai->ai_socktype,
ai->ai_protocol);

Use getaddrinfo and you don’t have
to know or care which protocol!

KAIST

28

Start server

Client /
Server
Session

Sockets
Interface

Client Server

socket socket

bind

listen

rio_readlineb

rio_writenrio_readlineb

rio_writen

Connection
request

rio_readlineb

close

close EOF

Await connection
request from
next client

open_listenfd

open_clientfd

acceptconnect

getaddrinfogetaddrinfo

listenfdclientfd

SA list SA list

KAIST

29

Sockets Interface: bind

 A server uses bind to ask the kernel to associate the
server’s socket address with a socket descriptor:

Our convention: typedef struct sockaddr SA;

 Process can read bytes that arrive on the connection whose
endpoint is addr by reading from descriptor sockfd

 Similarly, writes to sockfd are transferred along
connection whose endpoint is addr

 Best practice is to use getaddrinfo to supply the
arguments addr and addrlen.

int bind(int sockfd, SA *addr, socklen_t addrlen);

KAIST

30

Client /
Server
Session

Sockets
Interface

Client Server

socket socket

bind

listen

rio_readlineb

rio_writenrio_readlineb

rio_writen

Connection
request

rio_readlineb

close

close EOF

Await connection
request from
next client

open_listenfd

open_clientfd

acceptconnect

getaddrinfogetaddrinfo

SA list

listenfd

listenfd <-> SA

SA list

clientfd

KAIST

31

Sockets Interface: listen

 Kernel assumes that descriptor from socket function is an
active socket that will be on the client end

 A server calls the listen function to tell the kernel that a
descriptor will be used by a server rather than a client:

 Converts sockfd from an active socket to a listening
socket that can accept connection requests from clients.

 backlog is a hint about the number of outstanding
connection requests that the kernel should queue up
before starting to refuse requests (128-ish by default)

int listen(int sockfd, int backlog);

KAIST

32

Client /
Server
Session

Sockets
Interface

Client Server

socket socket

bind

listen

rio_readlineb

rio_writenrio_readlineb

rio_writen

Connection
request

rio_readlineb

close

close EOF

Await connection
request from
next client

open_listenfd

open_clientfd

acceptconnect

getaddrinfogetaddrinfo

SA list

clientfd

SA list

listenfd

listenfd <-> SA

listening listenfd

KAIST

33

Sockets Interface: accept

 Servers wait for connection requests from clients by
calling accept:

 Waits for connection request to arrive on the connection
bound to listenfd, then fills in client’s socket address
in addr and size of the socket address in addrlen.

 Returns a connected descriptor connfd that can be used
to communicate with the client via Unix I/O routines.

int accept(int listenfd, SA *addr, int *addrlen);

KAIST

34

Client /
Server
Session

Sockets
Interface

Client Server

socket socket

bind

listen

rio_readlineb

rio_writenrio_readlineb

rio_writen

Connection
request

rio_readlineb

close

close EOF

Await connection
request from
next client

open_listenfd

open_clientfd

acceptconnect

getaddrinfogetaddrinfo

listening listenfd

SA list SA list

clientfd listenfd

listenfd <-> SA

KAIST

35

Sockets Interface: connect

 A client establishes a connection with a server by calling
connect:

 Attempts to establish a connection with server at socket
address addr
 If successful, then clientfd is now ready for reading and writing.
 Resulting connection is characterized by socket pair

(x:y, addr.sin_addr:addr.sin_port)
 x is client address
 y is ephemeral port that uniquely identifies client process on

client host

 Best practice is to use getaddrinfo to supply the
arguments addr and addrlen.

int connect(int clientfd, SA *addr, socklen_t addrlen);

KAIST

36

connect/accept Illustrated
listenfd

Client
1. Server blocks in accept,
waiting for connection request
on listening descriptor
listenfd

clientfd

Server

listenfd

Client

clientfd

Server
2. Client makes connection request by
calling and blocking in connect

Connection
request

listenfd

Client

clientfd

Server
3. Server returns connfd from
accept. Client returns from connect.
Connection is now established between
clientfd and connfd

connfd

KAIST

37

Connected vs. Listening Descriptors
 Listening descriptor
 End point for client connection requests
 Created once and exists for lifetime of the server

 Connected descriptor
 End point of the connection between client and server
 A new descriptor is created each time the server accepts a

connection request from a client
 Exists only as long as it takes to service client

 Why the distinction?
 Allows for concurrent servers that can communicate over many

client connections simultaneously
 E.g., Each time we receive a new request, we fork a child to

handle the request

KAIST

38

Client /
Server
Session

Client Server

socket socket

bind

listen

rio_readlineb

rio_writenrio_readlineb

rio_writen

Connection
request

rio_readlineb

close

close EOF

Await connection
request from
next client

open_listenfd

open_clientfd

acceptconnect

getaddrinfogetaddrinfo

listening listenfd

connected connfdconnected (to SA) clientfd

SA list SA list

clientfd listenfd

listenfd <-> SA

KAIST

39

Client /
Server
Session

Client Server

socket socket

bind

listen

rio_readlineb

rio_writenrio_readlineb

rio_writen

Connection
request

rio_readlineb

close

close EOF

Await connection
request from
next client

open_listenfd

open_clientfd

acceptconnect

getaddrinfogetaddrinfo

KAIST

40

Sockets Helper: open_clientfd

int open_clientfd(char *hostname, char *port) {
int clientfd;
struct addrinfo hints, *listp, *p;

/* Get a list of potential server addresses */
memset(&hints, 0, sizeof(struct addrinfo));
hints.ai_socktype = SOCK_STREAM; /* Open a connection */
hints.ai_flags = AI_NUMERICSERV; /* …using numeric port arg. */
hints.ai_flags |= AI_ADDRCONFIG; /* Recommended for connections */
Getaddrinfo(hostname, port, &hints, &listp);

csapp.c

 Establish a connection with a server

AI_ADDRCONFIG means “use whichever of IPv4 and IPv6 works
on this computer”. Good practice for clients, not for servers.

KAIST

41

getaddrinfo

ai_canonname

result

ai_addr
ai_next

addrinfo structs

Socket address structs

NULL
ai_addr
ai_next

NULL
ai_addr
NULL

 Clients: walk this list, trying each socket address in turn, until the calls to
socket and connect succeed.

 Servers: walk the list calling socket, listen, bind for all addresses, then
use select to accept connections on any of them (beyond our scope)

KAIST

42

Sockets Helper: open_clientfd (cont)

/* Walk the list for one that we can successfully connect to */
for (p = listp; p; p = p->ai_next) {

/* Create a socket descriptor */
if ((clientfd = socket(p->ai_family, p->ai_socktype,

p->ai_protocol)) < 0)
continue; /* Socket failed, try the next */

/* Connect to the server */
if (connect(clientfd, p->ai_addr, p->ai_addrlen) != -1)

break; /* Success */
Close(clientfd); /* Connect failed, try another */

}

/* Clean up */
Freeaddrinfo(listp);
if (!p) /* All connects failed */

return -1;
else /* The last connect succeeded */

return clientfd;
} csapp.c

KAIST

43

Client /
Server
Session

Client Server

socket socket

bind

listen

rio_readlineb

rio_writenrio_readlineb

rio_writen

Connection
request

rio_readlineb

close

close EOF

Await connection
request from
next client

open_listenfd

open_clientfd

acceptconnect

getaddrinfogetaddrinfo

KAIST

44

Sockets Helper: open_listenfd

int open_listenfd(char *port)
{

struct addrinfo hints, *listp, *p;
int listenfd, optval=1;

/* Get a list of potential server addresses */
memset(&hints, 0, sizeof(struct addrinfo));
hints.ai_socktype = SOCK_STREAM; /* Accept connect. */
hints.ai_flags = AI_PASSIVE | AI_ADDRCONFIG; /* …on any IP addr */
hints.ai_flags |= AI_NUMERICSERV; /* …using port no. */
Getaddrinfo(NULL, port, &hints, &listp);

csapp.c

 Create a listening descriptor that can be used to accept
connection requests from clients.

AI_PASSIVE means “I plan to listen on this socket.”
AI_ADDRCONFIG normally not used for servers, but we use it for convenience

KAIST

45

Sockets Helper: open_listenfd (cont)

/* Walk the list for one that we can bind to */
for (p = listp; p; p = p->ai_next) {

/* Create a socket descriptor */
if ((listenfd = socket(p->ai_family, p->ai_socktype,

p->ai_protocol)) < 0)
continue; /* Socket failed, try the next */

/* Eliminates "Address already in use" error from bind */
Setsockopt(listenfd, SOL_SOCKET, SO_REUSEADDR,

(const void *)&optval , sizeof(int));

/* Bind the descriptor to the address */
if (bind(listenfd, p->ai_addr, p->ai_addrlen) == 0)

break; /* Success */
Close(listenfd); /* Bind failed, try the next */

} csapp.c

A production server would not break out of the loop on the first success.
We do that for simplicity only.

KAIST

46

Sockets Helper: open_listenfd (cont)

/* Clean up */
Freeaddrinfo(listp);
if (!p) /* No address worked */

return -1;

/* Make it a listening socket ready to accept conn. requests */
if (listen(listenfd, LISTENQ) < 0) {

Close(listenfd);
return -1;

}
return listenfd;

} csapp.c

 Key point: open_clientfd and open_listenfd are
both independent of any particular version of IP.

KAIST

47

Testing Servers Using telnet
 The telnet program is invaluable for testing servers

that transmit ASCII strings over Internet connections
 Our simple echo server
 Web servers
 Mail servers

 Usage:
 linux> telnet <host> <portnumber>
 Creates a connection with a server running on <host> and

listening on port <portnumber>

KAIST

48

Testing the Echo Server With telnet
whaleshark> ./echoserveri 15213
Connected to (MAKOSHARK.ICS.CS.CMU.EDU, 50280)
server received 11 bytes
server received 8 bytes

makoshark> telnet whaleshark.ics.cs.cmu.edu 15213
Trying 128.2.210.175...
Connected to whaleshark.ics.cs.cmu.edu (128.2.210.175).
Escape character is '^]'.
Hi there!
Hi there!
Howdy!
Howdy!
^]
telnet> quit
Connection closed.
makoshark>

KAIST

49

Today
 Questions from yesterday
 Material we didn’t get to yesterday
 Transmitting data using sockets
 Socket addresses
 getaddrinfo

 Setting up connections
 Application protocol example: HTTP

KAIST

50

Web Server Basics

Web
server

HTTP request

HTTP response
(content)

 Clients and servers communicate
using the HyperText Transfer
Protocol (HTTP)
 Client and server establish TCP

connection
 Client requests content
 Server responds with requested

content
 Client and server close connection

(eventually)
 Current version is HTTP/2.0

but HTTP/1.1 widely used still
 RFC 2616, June, 1999.

Web
client

(browser)

http://www.w3.org/Protocols/rfc2616/rfc2616.html

IP

TCP

HTTP

Datagrams

Streams

Web content

KAIST

51

Web Content
 Web servers return content to clients
 content: a sequence of bytes with an associated MIME (Multipurpose

Internet Mail Extensions) type

 Example MIME types
 text/html HTML document
 text/plain Unformatted text
 image/gif Binary image encoded in GIF format
 image/png Binary image encoded in PNG format
 image/jpeg Binary image encoded in JPEG format

You can find the complete list of MIME types at:
http://www.iana.org/assignments/media-types/media-types.xhtml

KAIST

52

Static and Dynamic Content

 The content returned in HTTP responses can be either static or
dynamic
 Static content: content stored in files and retrieved in response to an HTTP

request
 Examples: HTML files, images, audio clips, Javascript programs
 Request identifies which content file

 Dynamic content: content produced on-the-fly in response to an HTTP
request
 Example: content produced by a program executed by the server on

behalf of the client
 Request identifies file containing executable code

 Web content associated with a file that is managed by the server

KAIST

53

URLs and how clients and servers use them
 Unique name for a file: URL (Universal Resource Locator)
 Example URL: http://www.cmu.edu:80/index.html
 Clients use prefix (http://www.cmu.edu:80) to infer:
 What kind (protocol) of server to contact (HTTP)
 Where the server is (www.cmu.edu)
 What port it is listening on (80)

 Servers use suffix (/index.html) to:
 Determine if request is for static or dynamic content.

 No hard and fast rules for this
 One convention: executables reside in cgi-bin directory

 Find file on file system
 Initial “/” in suffix denotes home directory for requested content.
 Minimal suffix is “/”, which server expands to configured default

filename (usually, index.html)

KAIST

54

HTTP Request Example
GET / HTTP/1.1 Client: request line
Host: www.cmu.edu Client: required HTTP/1.1 header

Client: blank line terminates headers

 HTTP standard requires that each text line end with “\r\n”
 Blank line (“\r\n”) terminates request and response headers

KAIST

55

HTTP Requests

 HTTP request is a request line, followed by zero or more
request headers

 Request line: <method> <uri> <version>
 <method> is one of GET, POST, OPTIONS, HEAD, PUT,
DELETE, or TRACE

 <uri> is typically URL for proxies, URL suffix for servers
 A URL is a type of URI (Uniform Resource Identifier)
 See http://www.ietf.org/rfc/rfc2396.txt

 <version> is HTTP version of request (HTTP/1.0 or HTTP/1.1)

 Request headers: <header name>: <header data>
 Provide additional information to the server

http://www.ietf.org/rfc/rfc2396.txt

KAIST

56

HTTP Responses
 HTTP response is a response line followed by zero or more

response headers, possibly followed by content, with blank line
(“\r\n”) separating headers from content.

 Response line:
<version> <status code> <status msg>

 <version> is HTTP version of the response
 <status code> is numeric status
 <status msg> is corresponding English text

 200 OK Request was handled without error
 301 Moved Provide alternate URL
 404 Not found Server couldn’t find the file

 Response headers: <header name>: <header data>
 Provide additional information about response
 Content-Type: MIME type of content in response body
 Content-Length: Length of content in response body

KAIST

57

Example HTTP Transaction
whaleshark> telnet www.cmu.edu 80 Client: open connection to server
Trying 128.2.42.52... Telnet prints 3 lines to terminal
Connected to WWW-CMU-PROD-VIP.ANDREW.cmu.edu.
Escape character is '^]'.
GET / HTTP/1.1 Client: request line
Host: www.cmu.edu Client: required HTTP/1.1 header

Client: blank line terminates headers
HTTP/1.1 301 Moved Permanently Server: response line
Date: Wed, 05 Nov 2014 17:05:11 GMT Server: followed by 5 response headers
Server: Apache/1.3.42 (Unix) Server: this is an Apache server
Location: http://www.cmu.edu/index.shtml Server: page has moved here
Transfer-Encoding: chunked Server: response body will be chunked
Content-Type: text/html; charset=... Server: expect HTML in response body

Server: empty line terminates headers
15c Server: first line in response body
<HTML><HEAD> Server: start of HTML content
…
</BODY></HTML> Server: end of HTML content
0 Server: last line in response body
Connection closed by foreign host. Server: closes connection

 HTTP standard requires that each text line end with “\r\n”
 Blank line (“\r\n”) terminates request and response headers

KAIST

58

Example HTTP Transaction, Take 2
whaleshark> telnet www.cmu.edu 80 Client: open connection to server
Trying 128.2.42.52... Telnet prints 3 lines to terminal
Connected to WWW-CMU-PROD-VIP.ANDREW.cmu.edu.
Escape character is '^]'.
GET /index.shtml HTTP/1.1 Client: request line
Host: www.cmu.edu Client: required HTTP/1.1 header

Client: blank line terminates headers
HTTP/1.1 200 OK Server: response line
Date: Wed, 05 Nov 2014 17:37:26 GMT Server: followed by 4 response headers
Server: Apache/1.3.42 (Unix)
Transfer-Encoding: chunked
Content-Type: text/html; charset=...

Server: empty line terminates headers
1000 Server: begin response body
<html ..> Server: first line of HTML content
…
</html>
0 Server: end response body
Connection closed by foreign host. Server: close connection

KAIST

59

Example HTTP(S) Transaction, Take 3
whaleshark> openssl s_client www.cs.cmu.edu:443
CONNECTED(00000005)
…
Certificate chain
…
-
Server certificate
-----BEGIN CERTIFICATE-----
MIIGDjCCBPagAwIBAgIRAMiF7LBPDoySilnNoU+mp+gwDQYJKoZIhvcNAQELBQAw
djELMAkGA1UEBhMCVVMxCzAJBgNVBAgTAk1JMRIwEAYDVQQHEwlBbm4gQXJib3Ix
EjAQBgNVBAoTCUludGVybmV0MjERMA8GA1UECxMISW5Db21tb24xHzAdBgNVBAMT
wkWkvDVBBCwKXrShVxQNsj6J
…
-----END CERTIFICATE-----
subject=/C=US/postalCode=15213/ST=PA/L=Pittsburgh/street=5000 Forbes
Ave/O=Carnegie Mellon University/OU=School of Computer
Science/CN=www.cs.cmu.edu issuer=/C=US/ST=MI/L=Ann
Arbor/O=Internet2/OU=InCommon/CN=InCommon RSA Server CA
SSL handshake has read 6274 bytes and written 483 bytes
…
>GET / HTTP/1.0

HTTP/1.1 200 OK
Date: Tue, 12 Nov 2019 04:22:15 GMT
Server: Apache/2.4.10 (Ubuntu)
Set-Cookie: SHIBLOCATION=scsweb; path=/; domain=.cs.cmu.edu
... HTML Content Continues Below ...

http://www.cs.cmu.edu:443/

	EE309 Advanced Programming Techniques for EE��Lecture 13: Network programming 2
	Today
	Sockets
	Socket Programming Example
	Echo�Server�+ Client�Structure
	Recall: Unbuffered RIO Input/Output
	Recall: Buffered RIO Input Functions
	Today: Unix I/O, C Standard I/O, and RIO
	The RIO Package (213/CS:APP Package)
	Implementation of rio_readn
	Echo Client: Main Routine
	Echo Server: echo function
	Socket Address Structures
	Socket Address Structures
	Host and Service Conversion: getaddrinfo
	Host and Service Conversion: getaddrinfo
	Linked List Returned by getaddrinfo
	addrinfo Struct
	Host and Service Conversion: getnameinfo
	Conversion Example
	Conversion Example (cont)
	Running hostinfo
	Today
	슬라이드 번호 24
	Review: getaddrinfo
	슬라이드 번호 26
	Sockets Interface: socket
	Sockets Interface
	Sockets Interface: bind
	Sockets Interface
	Sockets Interface: listen
	Sockets Interface
	Sockets Interface: accept
	Sockets Interface
	Sockets Interface: connect
	connect/accept Illustrated
	Connected vs. Listening Descriptors
	슬라이드 번호 38
	슬라이드 번호 39
	Sockets Helper: open_clientfd
	getaddrinfo
	Sockets Helper: open_clientfd (cont)
	슬라이드 번호 43
	Sockets Helper: open_listenfd
	Sockets Helper: open_listenfd (cont)
	Sockets Helper: open_listenfd (cont)
	Testing Servers Using telnet
	Testing the Echo Server With telnet
	Today
	Web Server Basics
	Web Content
	Static and Dynamic Content
	URLs and how clients and servers use them
	HTTP Request Example
	HTTP Requests
	HTTP Responses
	Example HTTP Transaction
	Example HTTP Transaction, Take 2
	Example HTTP(S) Transaction, Take 3

