
EE309 Advanced Programming
Techniques for EE

Lecture 16:
Synchronization (Advanced)

INSU YUN (윤인수)

School of Electrical Engineering, KAIST

[Slides from 15-213: Introduction to Computer Systems at CMU]

KAIST

2

Today
 Deadlock
 Semaphores, Events, and Queues
 Reader-Writer Locks and Starvation
 Thread-Safe API Design

KAIST

3

Deadlock
 A program is deadlocked when

it is waiting for an event which
cannot ever happen
 Mathematical impossibility, not

just practical

 Most common form:
 Thread A is waiting for thread B to

do something
 Thread B is waiting for thread A to

do something
 Neither can make forward progress

KAIST

4

Deadlock caused by wrong locking order
void *thread_1(void *arg) {

pthread_mutex_lock(&mA);
pthread_mutex_lock(&mB);

// do stuff ...

pthread_mutex_unlock(&mA);
pthread_mutex_unlock(&mB);

}

void *thread_2(void *arg) {
pthread_mutex_lock(&mB);
pthread_mutex_lock(&mA);

// do stuff ...

pthread_mutex_unlock(&mB);
pthread_mutex_unlock(&mA);

}

Live coding demo: deadlocks

KAIST

5

Deadlock Visualized in Progress Graph
Any trajectory that enters
the deadlock region will
eventually reach the
deadlock state where each
thread is waiting for the other
to release a lock

Other trajectories luck out and
skirt the deadlock region

Unfortunate fact: trajectory
variations may mean deadlock
bugs are nondeterministic
(don’t always manifest,
making them hard to debug)

Thread 0

Thread 1

L(b) U(b)L(a) U(a)

U(a)

L(a)

L(b)

U(b)
Forbidden region
for b

Forbidden region
for a

Deadlock state:
cannot move
up or right –
both threads
are stuck

Deadlock
region

KAIST

6

Fix this deadlock with consistent ordering
void *thread_1(void *arg) {

pthread_mutex_lock(&mA);
pthread_mutex_lock(&mB);

// do stuff ...

pthread_mutex_unlock(&mA);
pthread_mutex_unlock(&mB);

}

void *thread_2(void *arg) {
pthread_mutex_lock(&mA);
pthread_mutex_lock(&mB);

// do stuff ...

pthread_mutex_unlock(&mB);
pthread_mutex_unlock(&mA);

}
L(a) U(b)L(b) U(a)

U(a)

L(a)

L(b)

U(b)
Forbid-
den
region
for b

Forbidden region
for a

Always possible to move
up or move right

Inconsistent unlock order
does not matter

KAIST

7

Today
 Deadlock
 Semaphores, Events, and Queues
 Reader-Writer Locks and Starvation
 Thread-Safe API Design

KAIST

8

Recall: Semaphores
 Integer value, always >= 0
 P(s) operation (aka sem_wait)
 If s is zero, wait for a V operation to happen.
 Then subtract 1 from s and return.

 V(s) operation (aka sem_post)
 Add 1 to s.
 If there are any threads waiting inside a P operation,

resume one of them

 Any thread may call P; any thread may call V; no ordering
requirements
 Key difference from mutexes

KAIST

11

Queues, Producers, and Consumers

 Common synchronization pattern:
 Producer waits for empty slot, inserts item in queue, and notifies consumer
 Consumer waits for item, removes it from queue, and notifies producer

 Examples
 Multimedia processing:

 Producer creates video frames, consumer renders them
 Event-driven graphical user interfaces

 Producer detects mouse clicks, mouse movements, and keyboard hits
and inserts corresponding events in queue

 Consumer retrieves events from queue and paints the display

producer
thread

shared
queue

consumer
thread

KAIST

12

Producer-Consumer on 1-entry Queue
 Maintain two semaphores: full + empty

empty
buffer

0

full

1

empty

full
buffer

1

full

0

empty

KAIST

13

Why 2 Semaphores for 1-entry Queue?
 Consider multiple producers & multiple consumers

 Producers will contend with each to get empty
 Consumers will contend with each other to get full

shared
queue

P1

Pn

C1

Cm

P(&shared.full);
item = shared.buf;
V(&shared.empty);

Consumers
P(&shared.empty);
shared.buf = item;
V(&shared.full);

Producers
fullempty

KAIST

14

Producer-Consumer on n-element Queue

 Requires a mutex and two counting semaphores:
 mutex: enforces mutually exclusive access to the queue’s innards
 slots: counts the available slots in the queue
 items: counts the available items in the queue

 Makes use of semaphore values > 1 (up to n)

P1

Pn

C1

Cm

Between 0 and n elements

KAIST

15

Today
 Deadlock
 Semaphores, Events, and Queues
 Reader-Writer Locks and Starvation
 Thread-Safe API Design

KAIST

16

Readers-Writers Problem

 Problem statement:
 Reader threads only read the object
 Writer threads modify the object (read/write access)
 Writers must have exclusive access to the object
 Unlimited number of readers can access the object

 Occurs frequently in real systems, e.g.,
 Online airline reservation system
 Multithreaded caching Web proxy

W1

W3

W2

R1

R3

R2

Read/
Write
Access

Read-only
Access

KAIST

17

Pthreads Reader/Writer Lock
 Data type pthread_rwlock_t
 Operations
 Acquire read lock
pthread_rwlock_rdlock(pthread_rwlock_t *rwlock)

 Acquire write lock
pthread_rwlock_wrlock(pthread_rwlock_t *rwlock)

 Release (either) lock
pthread_rwlock_unlock(pthread_rwlock_t *rwlock)

 Must be used correctly!
 Up to programmer to decide what requires read access and what

requires write access

KAIST

18

Reader/Writer Starvation
 Thread 1 has a read lock. Thread 2 is waiting for a write

lock. Thread 3 tries to take a read lock. What happens?

 Option 1: R2 gets read lock immediately
 Endless stream of overlapping readers → W waits forever

 Option 2: Writer always gets lock as soon as possible
 Endless stream of overlapping writers → readers wait forever

(not shown)

R1

R2

W

?

R1
W

R2

R1
W

R2

KAIST

19

Starvation
 A thread is starved when it makes no forward progress for

an unacceptably long time
 Unlike deadlock, it’s possible for it to get unstuck eventually
 “Unacceptably long” depends on the application

 Algorithms that guarantee no starvation are called fair
 Fair R/W locks: every waiter receives the lock in first-come first-

served order (several readers can receive the lock at the same time)

 Fairness is more complicated to implement
 Fairness can mean all threads are slower than they would be in an

unfair system (e.g. “lock convoy problem”)

R1
W

R2

KAIST

21

Today
 Deadlock
 Semaphores, Events, and Queues
 Reader-Writer Locks and Starvation
 Thread-Safe API Design

KAIST

22

Thread-Safe APIs
 A function is thread-safe if it always produces correct

results when called repeatedly from multiple concurrent
threads.

 Reasons for a function not to be thread-safe:
1. Internal shared state, no locking (e.g. your malloc)
2. Internal state modified across multiple uses (e.g. rand)
3. Returns a pointer to a static variable (e.g. strtok)
4. Calls a function that does any of the above

KAIST

23

Thread-Unsafe Functions (Class 1)

 These functions would be thread-safe if they began with
pthread_mutex_lock(&l) and ended with
pthread_mutex_unlock(&l) for some lock L

 Good example: malloc, realloc, free
 Your implementation will crash if called from multiple concurrent

threads
 The C library’s implementation won’t; it has internal locks

 Locking slows things down, of course

KAIST

24

Thread-Unsafe Functions (Class 2)
 Relying on persistent state across multiple function invocations
 Example: Random number generator that relies on static state

 Difference from class 1: locking would not fix the problem
 2 threads call rand() simultaneously, both get different results than if

only one made a sequence of calls to rand()

static unsigned int next = 1;

/* rand: return pseudo-random integer on 0..32767 */
int rand(void) {

next = next*1103515245 + 12345;
return (unsigned int)(next/65536) % 32768;

}

/* srand: set seed for rand() */
void srand(unsigned int seed) {

next = seed;
}

KAIST

25

Fixing Class 2 Thread-Unsafe Functions

 Pass state as part of argument
 and, thereby, eliminate static state

 Requires API change
 Callers responsible for allocating space for state

/* rand_r - return pseudo-random integer on 0..32767 */

int rand_r(int *nextp)
{

*nextp = *nextp*1103515245 + 12345;
return (unsigned int)(*nextp/65536) % 32768;

}

KAIST

26

Thread-Unsafe Functions (Class 3)
 Returning a pointer to a

static variable
 Like class 2, locking inside

function would not help
 Race between use of result

and calls from another thread

 Fix: make caller supply
space for result
 Requires API change

(also like class 2)
 Can be awkward for caller:

how much space is required?

/* Convert integer to string */
char *itoa(int x)
{

static char buf[11];
snprintf(buf, 11, "%d", x);
return buf;

}

/* Convert integer to string
(thread-safe) */

void itoa_r(int x, char *buf,
size_t bufsz)

{
snprintf(buf, bufsz, "%d", x);

}

KAIST

27

Thread-Unsafe Functions (Class 4)
 Calling thread-unsafe functions
 Any function that uses a class 1, 2, or 3 function internally is just as

thread-unsafe as that function itself
 This applies transitively

 Only fix is to modify the function to use only thread-safe
functions
 This may or may not involve API changes

KAIST

28

Thread-Safe Library Functions
 Most ISO C library functions are thread-safe
 Examples: malloc, free, printf, scanf
 Exceptions: strtok, rand, asctime, …

 Many older Unix C library functions are unsafe
 There is usually a safe replacement

Thread-unsafe function Class Reentrant version
asctime 3 strftime
ctime 3 strftime
localtime 3 strftime
gethostbyname 3 getaddrinfo
gethostbyaddr 3 getnameinfo
inet_ntoa 3 getnameinfo
rand 2 rand_r*

* The C library’s random number generators are all old
and not very “strong”. Use a modern CSPRNG instead.

KAIST

29

Reentrant Functions
 Def: A function is reentrant if it accesses no shared

variables when called by multiple threads.
 Important subset of thread-safe functions
 Require no synchronization operations
 Only way to make a Class 2 function thread-safe is to make it

reentrant (e.g., rand_r)

Reentrant
functions

All functions

Thread-unsafe
functions

Thread-safe
functions

KAIST

30

Threads / Signals Interactions

 Many library functions use lock-and-copy for thread safety
 malloc

 Free lists
 fprintf, printf, puts

 So that outputs from multiple threads don’t interleave
 snprintf

 Calls malloc internally for scratch space

 OK to interrupt them with locks held
 … as long as the handler doesn’t use them itself!

Icurr
Inext

Handler

Receive
signal

fprintf.lock()

fprintf.unlock()

KAIST

31

Bad Thread / Signal Interactions

 What if:
 Signal received while library function holds lock
 Handler calls same (or related) library function

 Deadlock!
 Signal handler cannot proceed until it gets lock
 Main program cannot proceed until handler completes

 Key Point
 Threads employ symmetric concurrency
 Signal handling is asymmetric

Icurr
Inext

Handler

Receive
signal

fprintf.lock()

fprintf.unlock()
fprintf.lock()
fprintf.unlock()

	EE309 Advanced Programming Techniques for EE��Lecture 16: �Synchronization (Advanced)
	Today
	Deadlock
	Deadlock caused by wrong locking order
	Deadlock Visualized in Progress Graph
	Fix this deadlock with consistent ordering
	Today
	Recall: Semaphores
	Queues, Producers, and Consumers
	Producer-Consumer on 1-entry Queue
	Why 2 Semaphores for 1-entry Queue?
	Producer-Consumer on n-element Queue
	Today
	Readers-Writers Problem
	Pthreads Reader/Writer Lock
	Reader/Writer Starvation
	Starvation
	Today
	Thread-Safe APIs
	Thread-Unsafe Functions (Class 1)
	Thread-Unsafe Functions (Class 2)
	Fixing Class 2 Thread-Unsafe Functions
	Thread-Unsafe Functions (Class 3)
	Thread-Unsafe Functions (Class 4)
	Thread-Safe Library Functions
	Reentrant Functions	
	Threads / Signals Interactions
	Bad Thread / Signal Interactions

