
EE309 Advanced Programming
Techniques for EE

Lecture 18:
Pseudorandomness

INSU YUN (윤인수)

School of Electrical Engineering, KAIST

[Slides from Introduction to Cryptography -- MATH/CMSC 456 at UMD]

Core principles of modern crypto

• Formal definitions
– Precise, mathematical model and definition of

what security means

• Assumptions
– Clearly stated and unambiguous

• Proofs of security
– Move away from design-break-patch

Defining secure encryption

Crypto definitions (generally)

• Security guarantee/goal
– What we want to achieve (or what we want to

prevent the attacker from achieving)

• Threat model
– What (real-world) capabilities the attacker is

assumed to have

Recall

• A private-key encryption scheme is defined by a
message space M and algorithms (Gen, Enc, Dec):
– Gen (key-generation algorithm): generates k
– Enc (encryption algorithm): takes key k and message

m ∈ M as input; outputs ciphertext c
c ← Enck(m)

– Dec (decryption algorithm): takes key k and
ciphertext c as input; outputs m.

m := Deck(c)

Private-key encryption

k k
c

key

m
c := Enck(m) message/plaintext

encryption

ciphertext

m := Deck(c)

decryption

key

Goal of secure encryption?

• How would you define what it means for
encryption scheme (Gen, Enc, Dec) over
message space M to be secure?
– Against a (single) ciphertext-only attack

Secure encryption?

• “Impossible for the attacker to learn the key”
– The key is a means to an end, not the end itself
– Necessary (to some extent) but not sufficient
– Easy to design an encryption scheme that

hides the key completely, but is insecure
– Can design schemes where most of the key is

leaked, but the scheme is still secure

Secure encryption?

• “Impossible for the attacker to learn the
plaintext from the ciphertext”
– What if the attacker learns 90% of the plaintext?

The right definition

• “Regardless of any prior information the
attacker has about the plaintext, the ciphertext
should leak no additional information about
the plaintext”
– How to formalize?

Perfect secrecy

Probability review

• Random variable (r.v.): variable that takes on
(discrete) values with certain probabilities

• Probability distribution for a r.v. specifies the
probabilities with which the variable takes on each
possible value
– Each probability must be between 0 and 1
– The probabilities must sum to 1

Probability review

• Event: a particular occurrence in some experiment
– Pr[E]: probability of event E

• Conditional probability: probability that one event
occurs, given that some other event occurred
– Pr[A | B] = Pr[A and B]/Pr[B]

• Two random variables X, Y are independent if
for all x, y: Pr[X=x | Y=y] = Pr[X=x]

Probability review

• Law of total probability: say E1, …, En are a partition
of all possibilities. Then for any A:

Pr[A] = Σi Pr[A and Ei] = Σi Pr[A | Ei] · Pr[Ei]

• Bayes’s theorem
Pr[A | B] = Pr[B | A] · Pr[A]/Pr[B]

Probability distributions

• Let M be the random variable denoting the
value of the message
– M ranges over M
– Context dependent!
– Reflects the likelihood of different messages being

sent, given the attacker’s prior knowledge
– E.g.,

Pr[M = “attack today”] = 0.7
Pr[M = “don’t attack”] = 0.3

Probability distributions

• Fix some encryption scheme (Gen, Enc, Dec), and
some distribution for M

• Consider the following (randomized) experiment:
1. Generate a key k using Gen
2. Choose a message m, according to the given distribution
3. Compute c ← Enck(m)

• Let C be a random variable denoting the value of the
ciphertext in this experiment

• This defines a distribution on the ciphertext!

Perfect secrecy (informal)

• “Regardless of any prior information the
attacker has about the plaintext, the ciphertext
should leak no additional information about
the plaintext”

Perfect secrecy (formal)

• Encryption scheme (Gen, Enc, Dec) with message
space M and ciphertext space C is perfectly secret if
for every distribution over M, every m ∈ M, and
every c ∈ C with Pr[C=c] > 0, it holds that

Pr[M = m | C = c] = Pr[M = m].

• I.e., the distribution of M does not change
conditioned on observing the ciphertext

Example 3

• Consider the shift cipher, and the distribution
Pr[M = ‘one’] = ½, Pr[M = ‘ten’] = ½

• Take m = ‘ten’ and c = ‘rqh’

• Pr[M = ‘ten’ | C = ‘rqh’] = ?
= 0
≠ Pr[M = ‘ten’]

Conclusion

• The shift cipher is not perfectly secret!
– At least not for 2-character messages

• How to construct a perfectly secret scheme?
– One-time pad (proven by Shannon in 1949)

One-time pad

• Let M = {0,1}n

• Gen: choose a uniform key k ∈ {0,1}n

• Enck(m) = k ⊕ m
• Deck(c) = k ⊕ c

• Correctness:
Deck(Enck(m)) = k ⊕ (k ⊕ m)

= (k ⊕ k) ⊕ m = m

One-time pad

key

n bits

message

n bits

ciphertext

n bits

⊕

Perfect secrecy of one-time pad

• Fix arbitrary distribution over M = {0,1}n, and
arbitrary m, c ∈ {0,1}n

• Pr[M = m | C = c] = ?
= Pr[C = c | M = m] · Pr[M = m]/Pr[C = c]

• Pr[C = c]
= Σm’ Pr[C = c | M = m’] · Pr[M = m’]
= Σm’ Pr[K = m’ ⊕ c | M = m’] · Pr[M = m’]
= Σm’ 2-n · Pr[M = m’]
= 2-n

Perfect secrecy of one-time pad

• Fix arbitrary distribution over M = {0,1}n, and
arbitrary m, c ∈ {0,1}n

• Pr[M = m | C = c] = ?
= Pr[C = c | M = m] · Pr[M = m]/Pr[C = c]
= Pr[K = m ⊕ c | M = m] · Pr[M = m] / 2-n

= 2-n · Pr[M = m] / 2-n

= Pr[M = m]

One-time pad

• The one-time pad achieves perfect secrecy!

• One-time pad has historically been used in the
real world
– E.g., “red phone” between DC and Moscow

• Not currently used!
– Why not?

One-time pad

• Several limitations
– The key is as long as the message
– Only secure if each key is used to encrypt a

single message
• (Trivially broken by a known-plaintext attack)

⇒ Parties must share keys of (total) length equal
to the (total) length of all the messages they
might ever send

Optimality of the one-time pad

• Theorem: if (Gen, Enc, Dec) with message
space M is perfectly secret, then |K| ≥ |M|.

Where do we stand?

• We defined the notion of perfect secrecy
• We proved that the one-time pad achieves it!
• We proved that the one-time pad is optimal!

– I.e., we cannot improve the key length
• Are we done?

• Do better by relaxing the definition
– But in a meaningful way…

Perfect secrecy

• Requires that absolutely no information about
the plaintext is leaked, even to eavesdroppers
with unlimited computational power
– Has some inherent drawbacks
– Seems unnecessarily strong

Computational secrecy

• Would be ok if a scheme leaked information
with tiny probability to eavesdroppers with
bounded computational resources

• I.e., we can relax perfect secrecy by
– Allowing security to “fail” with tiny probability
– Restricting attention to “efficient” attackers

Bounded attackers?

• Consider brute-force search of key space;
assume one key can be tested per clock cycle

• Desktop computer ≈ 257 keys/year
• Supercomputer ≈ 280 keys/year
• Supercomputer since Big Bang ≈ 2112 keys

– Restricting attention to attackers who can try 2112

keys is fine!

• Modern key space: 2128 keys or more…

Roadmap

• We will give an alternate (but equivalent)
definition of perfect secrecy
– Using a randomized experiment

• That definition has a natural relaxation

• Warning: the material gets much more
difficult now

Perfect indistinguishability

• Let Π=(Gen, Enc, Dec) be an encryption
scheme with message space M, and A an
adversary

• Define a randomized exp’t PrivKA,Π:
1. A outputs m0, m1 ∈ M
2. k ← Gen, b ← {0,1}, c ← Enck(mb)
3. b’ ← A(c)
Adversary A succeeds if b = b’, and we say the
experiment evaluates to 1 in this case

Challenge ciphertext

Perfect indistinguishability

• Easy to succeed with probability ½ …

• Π is perfectly indistinguishable if for all
attackers (algorithms) A, it holds that

Pr[PrivKA,Π = 1] = ½

Computational indistinguishability
(concrete version)

• Π is (t, ε)-indistinguishable if for all attackers A
running in time at most t, it holds that

Pr[PrivKA,Π = 1] ≤ ½ + ε

• Note: (∞, 0)-indistinguishable = perfect
indistinguishability
– Relax definition by taking t < ∞ and ε > 0

“Pseudo” one-time pad
(i.e., Stream cipher)

“pseudo” key

p bits

⊕

G

key

n bits

ciphertext

p bits

message

p bits

Pseudorandomness

Pseudorandomness

• Important building block for computationally
secure encryption

• Important concept in cryptography

What does “random” mean?

• What does “uniform” mean?
• Which of the following is a uniform string?

– 0101010101010101
– 0010111011100110
– 0000000000000000

• If we generate a uniform 16-bit string, each of
the above occurs with probability 2-16

What does “uniform” mean?

• “Uniformity” is not a property of a string, but
a property of a distribution

• A distribution on n-bit strings is a function
D: {0,1}n → [0,1] such that Σx D(x) = 1
– The uniform distribution on n-bit strings, denoted

Un, assigns probability 2-n to every x ∈ {0,1}n

What does “pseudorandom” mean?

• Informal: cannot be distinguished from
uniform (i.e., random)

• Which of the following is pseudorandom?
– 0101010101010101
– 0010111011100110
– 0000000000000000

• Pseudorandomness is a property of a
distribution, not a string

Pseudorandomness (take 1)

• Fix some distribution D on n-bit strings
– x ← D means “sample x according to D”

• Historically, D was considered pseudorandom
if it “passed a bunch of statistical tests”
– Prx ← D[1st bit of x is 1] ≈ ½
– Prx ← D[parity of x is 1] ≈ ½
– Prx ← D[Testi(x)=1] ≈ Prx ← Un[Testi(x)=1] for i = 1, …

Pseudorandomness (take 2)

• This is not sufficient in an adversarial setting!
– Who knows what statistical test an attacker

will use?

• Cryptographic def’n of pseudorandomness:
– D is pseudorandom if it passes all efficient

statistical tests

Pseudorandomness (concrete)

• Let D be a distribution on p-bit strings

• D is (t, ε)-pseudorandom if for all A running in
time at most t,

| Prx ← D[A(x)=1] - Prx ← Up[A(x)=1] | ≤ ε

Pseudorandom generators (PRGs)

• A PRG is an efficient, deterministic algorithm
that expands a short, uniform seed into a
longer, pseudorandom output
– Useful whenever you have a “small” number of

true random bits, and want lots of “random-
looking” bits

PRGs

• Let G be a deterministic, poly-time algorithm
that is expanding, i.e., |G(x)| = p(|x|) > |x|

seed

G

output

PRGs

• G is a PRG iff {Dn} is pseudorandom
– Dn = the distribution on p(n)-bit strings defined by

choosing x ← Un and outputting G(x)

• I.e., for all efficient distinguishers A, there is a
negligible function ε such that

| Prx ← Un[A(G(x))=1] - Pry ← Up(n)[A(y)=1] | ≤ ε(n)

• I.e., no efficient A can distinguish whether it is
given G(x) (for uniform x) or a uniform string y!

Example (insecure PRG)

• Let G(x) = 0….0
– Distinguisher?
– Analysis?

Example (insecure PRG)

• Let G(x) = x | OR(bits of x)
– Distinguisher?
– Analysis?

Do PRGs exist?

• We don’t know…
– Would imply P ≠ NP

• We will assume certain algorithms are PRGs
– Recall the 3 principles of modern crypto…
– This is what is done in practice

Where things stand

• We saw that there are some inherent
limitations if we want perfect secrecy
– In particular, key must be as long as the message

• We defined computational secrecy, a
relaxed notion of security

• Can we overcome prior limitations?

Recall: one-time pad

key

p bits

⊕ ciphertext

p bits

message

p bits

“Pseudo” one-time pad

“pseudo” key

p bits

⊕

G

key

n bits

ciphertext

p bits

message

p bits

Pseudo one-time pad

• Let G be a deterministic algorithm, with
|G(k)| = p(|k|)

• Gen(1n): output uniform n-bit key k
– Security parameter n ⇒ message space {0,1}p(n)

• Enck(m): output G(k) ⊕ m
• Deck(c): output G(k) ⊕ c

• Correctness is obvious…

Security of pseudo-OTP?

• Would like to be able to prove security
– Based on the assumption that G is a PRG

Definitions, proofs, and assumptions

• We’ve defined computational secrecy
• Our goal is to prove that the pseudo OTP

meets that definition
• We cannot prove this unconditionally

– Beyond our current techniques…
– Anyway, security clearly depends on G

• Can prove security based on the assumption
that G is a pseudorandom generator

PRGs, revisited

• Let G be an efficient, deterministic function
with |G(k)| = p(|k|)

D

y

b

y ← Up(n)

k ← Un

G

For any efficient D, the probabilities that D
outputs 1 in each case must be “close”

Proof by reduction

1. Assume G is a pseudorandom generator
2. Assume toward a contradiction that there is

an efficient attacker A who “breaks” the
pseudo-OTP scheme (as per the definition)

3. Use A as a subroutine to build an efficient D
that “breaks” pseudorandomness of G
– By assumption, no such D exists!
⇒ No such A can exist

Alternately…

1. Assume G is a pseudorandom generator
2. Fix some arbitrary, efficient A attacking the

pseudo-OTP scheme
3. Use A as a subroutine to build an efficient D

attacking G
– Relate the distinguishing gap of D to the success

probability of A
4. By assumption, the distinguishing gap of D must

be negligible
⇒ Use this to bound the success probability of A

Security theorem

• If G is a pseudorandom generator, then the
pseudo one-time pad Π is EAV-secure (i.e.,
computationally indistinguishable)

The reduction

m0, m1

b←{0,1}mb

c
b’

if (b=b’)
output 1 D

y

A

Analysis

• If A runs in polynomial time, then so does D

Analysis

• Let µ(n) = Pr[PrivKA,Π(n) = 1]
• Claim: when y=G(x) for uniform x, then the

view of A is exactly as in PrivKA,Π(n)
⇒ Prx ← Un[D(G(x))=1] = µ(n)

The reduction

m0, m1

b←{0,1}mb

c
b’

if (b=b’)
output 1 D

y

A

k ← Un

G

Π-Enc

Analysis

• Let µ(n) = Pr[PrivKA,Π(n) = 1]
• If y=G(x) for uniform x, then the view of A is

exactly as in PrivKA,Π(n)
⇒ Prx ← Un[D(G(x))=1] = µ(n)

• If distribution of y is uniform, then A succeeds
with probability exactly ½
⇒ Pry ← Up(n)[D(y)=1] = ½

The reduction

m0, m1

b←{0,1}mb

c
b’

if (b=b’)
output 1 D

y

A

y ← Up(n)

OTP-Enc

Analysis

• Let µ(n) = Pr[PrivKA,Π(n) = 1]
• If y=G(x) for uniform x, then the view of A is

exactly as in PrivKA,Π(n)
⇒ Prx ← Un[D(G(x))=1] = µ(n)

• If distribution of y is uniform, then A succeeds
with probability exactly ½
⇒ Pry ← Up(n)[D(y)=1] = ½

• Since G is pseudorandom:
| µ(n) – ½ | ≤ negl(n)

⇒ Pr[PrivKA,Π(n) = 1] ≤ ½ + negl(n)

Have we gained anything?

• YES: the pseudo-OTP has a key shorter than
the message
– n bits vs. p(n) bits

• The fact that the parties internally generate a
p(n)-bit temporary string to encrypt/decrypt is
irrelevant
– The key is what the parties share in advance
– Parties do not store the p(n)-bit temporary value

Recall…

• Perfect secrecy has two limitations/drawbacks
– Key as long as the message
– Key can only be used once

• We have seen how to circumvent the first
• Does the pseudo OTP have the second

limitation?

• How can we circumvent the second?

But first…

• Develop an appropriate security definition

• Recall that security definitions have two parts
– Security goal
– Threat model

• We will keep the security goal the same, but
strengthen the threat model

Single-message secrecy

k
c

m
c ← Enck(m)

k

Multiple-message secrecy

k
c1, …, ct

m1, …, mt
c1 ← Enck(m1)

…
ct ← Enck(mt)

k

A formal definition

• Fix Π, A
• Define a randomized exp’t PrivKmult

A,Π(n):
1. A(1n) outputs two vectors (m0,1, …, m0,t) and

(m1,1, …, m1,t)
• Require that |m0,i| = |m1,i| for all i

2. k ← Gen(1n), b ← {0,1}, for all i: ci ← Enck(mb,i)
3. b’ ← A(c1, …, ct); A succeeds if b = b’, and

experiment evaluates to 1 in this case

A formal definition

• Π is multiple-message indistinguishable if for
all PPT attackers A, there is a negligible
function ε such that

Pr[PrivKmult
A,Π(n) = 1] ≤ ½ + ε(n)

• Exercise: show that the pseudo-OTP is not
multiple-message indistinguishable

	EE309 Advanced Programming Techniques for EE��Lecture 18: �Pseudorandomness
	Core principles of modern crypto
	슬라이드 번호 3
	Crypto definitions (generally)
	Recall
	Private-key encryption
	Goal of secure encryption?
	Secure encryption?
	Secure encryption?
	The right definition
	슬라이드 번호 11
	Probability review
	Probability review
	Probability review
	Probability distributions
	Probability distributions
	Perfect secrecy (informal)
	Perfect secrecy (formal)
	Example 3
	Conclusion
	One-time pad
	One-time pad
	Perfect secrecy of one-time pad
	Perfect secrecy of one-time pad
	One-time pad
	One-time pad
	Optimality of the one-time pad
	Where do we stand?
	Perfect secrecy
	Computational secrecy
	Bounded attackers?
	Roadmap
	Perfect indistinguishability
	Perfect indistinguishability
	Computational indistinguishability�(concrete version)
	“Pseudo” one-time pad �(i.e., Stream cipher)
	슬라이드 번호 37
	Pseudorandomness
	What does “random” mean?
	What does “uniform” mean?
	What does “pseudorandom” mean?
	Pseudorandomness (take 1)
	Pseudorandomness (take 2)
	Pseudorandomness (concrete)
	Pseudorandom generators (PRGs)
	PRGs
	PRGs
	Example (insecure PRG)
	Example (insecure PRG)
	Do PRGs exist?
	Where things stand
	Recall: one-time pad
	“Pseudo” one-time pad
	Pseudo one-time pad
	Security of pseudo-OTP?
	Definitions, proofs, and assumptions
	PRGs, revisited
	Proof by reduction
	Alternately…
	Security theorem
	The reduction
	Analysis
	Analysis
	The reduction
	Analysis
	The reduction
	Analysis
	Have we gained anything?
	Recall…
	But first…
	Single-message secrecy
	Multiple-message secrecy
	A formal definition
	A formal definition

