EE309 Advanced Programming Techniques for EE

Lecture 18:
Pseudorandomness

INSU YUN (윤인수)

School of Electrical Engineering, KAIST

Core principles of modern crypto

- Formal definitions
- Precise, mathematical model and definition of what security means
- Assumptions
- Clearly stated and unambiguous
- Proofs of security
- Move away from design-break-patch

Defining secure encryption

Crypto definitions (generally)

- Security guarantee/goal
- What we want to achieve (or what we want to prevent the attacker from achieving)
- Threat model
- What (real-world) capabilities the attacker is assumed to have

Recall

- A private-key encryption scheme is defined by a message space \mathcal{M} and algorithms (Gen, Enc, Dec):
- Gen (key-generation algorithm): generates k
- Enc (encryption algorithm): takes key k and message $\mathrm{m} \in \mathscr{M}$ as input; outputs ciphertext c

$$
\mathrm{c} \leftarrow E \mathrm{En}_{\mathrm{k}}(\mathrm{~m})
$$

- Dec (decryption algorithm): takes key k and ciphertext c as input; outputs m .

$$
\mathrm{m}:=\operatorname{Dec}_{\mathrm{k}}(\mathrm{c})
$$

Private-key encryption

key

Goal of secure encryption?

- How would you define what it means for encryption scheme (Gen, Enc, Dec) over message space \mathcal{M} to be secure?
- Against a (single) ciphertext-only attack

Secure encryption?

- "Impossible for the attacker to learn the key"
- The key is a means to an end, not the end itself
- Necessary (to some extent) but not sufficient
- Easy to design an encryption scheme that hides the key completely, but is insecure
- Can design schemes where most of the key is leaked, but the scheme is still secure

Secure encryption?

- "Impossible for the attacker to learn the plaintext from the ciphertext"
- What if the attacker learns 90% of the plaintext?

The right definition

- "Regardless of any prior information the attacker has about the plaintext, the ciphertext should leak no additional information about the plaintext"
- How to formalize?

Perfect secrecy

Probability review

- Random variable (r.v.): variable that takes on (discrete) values with certain probabilities
- Probability distribution for a r.v. specifies the probabilities with which the variable takes on each possible value
- Each probability must be between 0 and 1
- The probabilities must sum to 1

Probability review

- Event: a particular occurrence in some experiment $-\operatorname{Pr}[E]$: probability of event E
- Conditional probability: probability that one event occurs, given that some other event occurred
$-\operatorname{Pr}[A \mid B]=\operatorname{Pr}[A$ and $B] / \operatorname{Pr}[B]$
- Two random variables X, Y are independent if for all $x, y: \operatorname{Pr}[X=x \mid Y=y]=\operatorname{Pr}[X=x]$

Probability review

- Law of total probability: say $\mathrm{E}_{1}, \ldots, \mathrm{E}_{\mathrm{n}}$ are a partition of all possibilities. Then for any A :

$$
\operatorname{Pr}[\mathrm{A}]=\Sigma_{\mathrm{i}} \operatorname{Pr}\left[\mathrm{~A} \text { and } \mathrm{E}_{\mathrm{i}}\right]=\Sigma_{\mathrm{i}} \operatorname{Pr}\left[\mathrm{~A} \mid \mathrm{E}_{\mathrm{i}}\right] \cdot \operatorname{Pr}\left[\mathrm{E}_{\mathrm{i}}\right]
$$

- Bayes's theorem

$$
\operatorname{Pr}[\mathrm{A} \mid \mathrm{B}]=\operatorname{Pr}[\mathrm{B} \mid \mathrm{A}] \cdot \operatorname{Pr}[\mathrm{A}] / \operatorname{Pr}[\mathrm{B}]
$$

Probability distributions

- Let M be the random variable denoting the value of the message
- M ranges over \mathcal{M}
- Context dependent!
- Reflects the likelihood of different messages being sent, given the attacker's prior knowledge
- E.g.,

$$
\begin{aligned}
& \operatorname{Pr}[\mathrm{M}=\text { "attack today" }]=0.7 \\
& \operatorname{Pr}[\mathrm{M}=\text { "don't attack" }]=0.3
\end{aligned}
$$

Probability distributions

- Fix some encryption scheme (Gen, Enc, Dec), and some distribution for M
- Consider the following (randomized) experiment:

1. Generate a key k using Gen
2. Choose a message m, according to the given distribution
3. Compute $c \leftarrow E n c_{k}(m)$

- Let C be a random variable denoting the value of the ciphertext in this experiment
- This defines a distribution on the ciphertext!

Perfect secrecy (informal)

- "Regardless of any prior information the attacker has about the plaintext, the ciphertext should leak no additional information about the plaintext"

Perfect secrecy (formal)

- Encryption scheme (Gen, Enc, Dec) with message space \mathscr{M} and ciphertext space C is perfectly secret if for every distribution over \mathcal{M}, every $\mathrm{m} \in \mathcal{M}$, and every $\mathrm{c} \in C$ with $\operatorname{Pr}[\mathrm{C}=\mathrm{c}]>0$, it holds that

$$
\operatorname{Pr}[\mathrm{M}=\mathrm{m} \mid \mathrm{C}=\mathrm{c}]=\operatorname{Pr}[\mathrm{M}=\mathrm{m}] .
$$

- I.e., the distribution of M does not change conditioned on observing the ciphertext

Example 3

- Consider the shift cipher, and the distribution $\operatorname{Pr}\left[\mathrm{M}={ }^{\prime}\right.$ one' $]=1 / 2, \operatorname{Pr}\left[\mathrm{M}={ }^{\prime}\right.$ ten' $]=1 / 2$
- Take $\mathrm{m}=$ 'ten' and $\mathrm{c}=$ ' rqh '
- $\operatorname{Pr}[\mathrm{M}=$ 'ten' | $\mathrm{C}=$ 'rqh' $]=$?
$=0$
$\neq \operatorname{Pr}[\mathrm{M}=$ = ten']

Conclusion

- The shift cipher is not perfectly secret!
- At least not for 2-character messages
- How to construct a perfectly secret scheme?
- One-time pad (proven by Shannon in 1949)

One-time pad

- Let $\mathscr{M}=\{0,1\}^{n}$
- Gen: choose a uniform key $k \in\{0,1\}^{n}$
- $E n c_{k}(m)=k \oplus m$
- $\operatorname{Dec}_{\mathrm{k}}(\mathrm{c})=\mathrm{k} \oplus \mathrm{c}$
- Correctness:
$\operatorname{Dec}_{k}\left(\operatorname{Enc}_{k}(\mathrm{~m})\right)=\mathrm{k} \oplus(\mathrm{k} \oplus \mathrm{m})$

$$
=(\mathrm{k} \oplus \mathrm{k}) \oplus \mathrm{m}=\mathrm{m}
$$

One-time pad

Perfect secrecy of one-time pad

- Fix arbitrary distribution over $\mathcal{M}=\{0,1\}^{n}$, and arbitrary $m, c \in\{0,1\}^{n}$
- $\operatorname{Pr}[\mathrm{M}=\mathrm{m} \mid \mathrm{C}=\mathrm{c}]=$?

$$
=\operatorname{Pr}[C=c \mid M=m] \cdot \operatorname{Pr}[M=m] / \operatorname{Pr}[C=c]
$$

- $\operatorname{Pr}[\mathrm{C}=\mathrm{c}]$

$$
\begin{aligned}
& =\Sigma_{m^{\prime}} \operatorname{Pr}\left[C=c \mid M=m^{\prime}\right] \cdot \operatorname{Pr}\left[M=m^{\prime}\right] \\
& =\Sigma_{m^{\prime}} \operatorname{Pr}\left[K=m^{\prime} \oplus c \mid M=m^{\prime}\right] \cdot \operatorname{Pr}\left[M=m^{\prime}\right] \\
& =\Sigma_{m^{\prime}} 2^{-n} \cdot \operatorname{Pr}\left[M=m^{\prime}\right] \\
& =2^{-n}
\end{aligned}
$$

Perfect secrecy of one-time pad

- Fix arbitrary distribution over $\mathcal{M}=\{0,1\}^{n}$, and arbitrary $m, c \in\{0,1\}^{n}$
- $\operatorname{Pr}[\mathrm{M}=\mathrm{m} \mid \mathrm{C}=\mathrm{c}]=$?
$=\operatorname{Pr}[C=c \mid M=m] \cdot \operatorname{Pr}[M=m] / \operatorname{Pr}[C=c]$
$=\operatorname{Pr}[K=m \oplus c \mid M=m] \cdot \operatorname{Pr}[M=m] / 2^{-n}$
$=2^{-n} \cdot \operatorname{Pr}[M=m] / 2^{-n}$
$=\operatorname{Pr}[\mathrm{M}=\mathrm{m}]$

One-time pad

- The one-time pad achieves perfect secrecy!
- One-time pad has historically been used in the real world
- E.g., "red phone" between DC and Moscow
- Not currently used!
- Why not?

One-time pad

- Several limitations
- The key is as long as the message
- Only secure if each key is used to encrypt a single message
- (Trivially broken by a known-plaintext attack)
\Rightarrow Parties must share keys of (total) length equal to the (total) length of all the messages they might ever send

Optimality of the one-time pad

- Theorem: if (Gen, Enc, Dec) with message space \mathcal{M} is perfectly secret, then $|\mathcal{K}| \geq|\mathcal{M}|$.

Where do we stand?

- We defined the notion of perfect secrecy
- We proved that the one-time pad achieves it!
- We proved that the one-time pad is optimal!
- I.e., we cannot improve the key length
- Are we done?
- Do better by relaxing the definition
- But in a meaningful way...

Perfect secrecy

- Requires that absolutely no information about the plaintext is leaked, even to eavesdroppers with unlimited computational power
- Has some inherent drawbacks
- Seems unnecessarily strong

Computational secrecy

- Would be ok if a scheme leaked information with tiny probability to eavesdroppers with bounded computational resources
- I.e., we can relax perfect secrecy by
- Allowing security to "fail" with tiny probability
- Restricting attention to "efficient" attackers

Bounded attackers?

- Consider brute-force search of key space; assume one key can be tested per clock cycle
- Desktop computer $\approx 2{ }^{57}$ keys/year
- Supercomputer $\approx 2^{80}$ keys/year
- Supercomputer since Big Bang $\approx 2{ }^{112}$ keys
- Restricting attention to attackers who can try 2^{112} keys is fine!
- Modern key space: 2^{128} keys or more...

Roadmap

- We will give an alternate (but equivalent) definition of perfect secrecy
- Using a randomized experiment
- That definition has a natural relaxation
- Warning: the material gets much more difficult now

Perfect indistinguishability

- Let $\Pi=(G e n$, Enc, Dec) be an encryption scheme with message space \mathcal{M}, and A an adversary
- Define a randomized $\exp ^{\prime t}$ PrivK $_{\mathrm{A}, \Pi}$: 1. A outputs $\mathrm{m}_{0}, \mathrm{~m}_{1} \in \mathcal{M}$

2. $\mathrm{k} \leftarrow$ Gen, $\mathrm{b} \leftarrow\{0,1\}, \mathrm{c}_{\leftarrow} \leftarrow E \mathrm{Enc}_{\mathrm{k}}\left(\mathrm{m}_{\mathrm{b}}\right)$
3. $b^{\prime} \leftarrow A(c)$

Challenge ciphertext Adversary A succeeds if $b=b^{\prime}$, and we say the experiment evaluates to 1 in this case

Perfect indistinguishability

- Easy to succeed with probability $1 / 2$...
- Π is perfectly indistinguishable if for all attackers (algorithms) A, it holds that

$$
\operatorname{Pr}\left[\operatorname{PrivK}_{A, \Pi}=1\right]=1 / 2
$$

Computational indistinguishability (concrete version)

- Π is $(\mathrm{t}, \varepsilon)$-indistinguishable if for all attackers A running in time at most t , it holds that

$$
\operatorname{Pr}\left[\operatorname{PrivK}_{\mathrm{A}, \Pi}=1\right] \leq 1 / 2+\varepsilon
$$

- Note: $(\infty, 0)$-indistinguishable $=$ perfect indistinguishability
- Relax definition by taking $\mathrm{t}<\infty$ and $\varepsilon>0$

"Pseudo" one-time pad (i.e., Stream cipher)

Pseudorandomness

Pseudorandomness

- Important building block for computationally secure encryption
- Important concept in cryptography

What does "random" mean?

- What does "uniform" mean?
- Which of the following is a uniform string?
- 0101010101010101
- 0010111011100110
- 0000000000000000
- If we generate a uniform 16-bit string, each of the above occurs with probability 2^{-16}

What does "uniform" mean?

- "Uniformity" is not a property of a string, but a property of a distribution
- A distribution on n-bit strings is a function $D:\{0,1\}^{n} \rightarrow[0,1]$ such that $\Sigma_{x} D(x)=1$
- The uniform distribution on n-bit strings, denoted U_{n}, assigns probability 2^{-n} to every $x \in\{0,1\}^{n}$

What does "pseudorandom" mean?

- Informal: cannot be distinguished from uniform (i.e., random)
- Which of the following is pseudorandom?
- 0101010101010101
- 0010111011100110
- 0000000000000000
- Pseudorandomness is a property of a distribution, not a string

Pseudorandomness (take 1)

- Fix some distribution D on n-bit strings $-x \leftarrow$ D means "sample x according to D"
- Historically, D was considered pseudorandom if it "passed a bunch of statistical tests"
$-\operatorname{Pr}_{x \leftarrow D}\left[1^{\text {st }}\right.$ bit of x is 1$] \approx 1 / 2$
$-\operatorname{Pr}_{x \leftarrow D}$ [parity of x is 1$] \approx 1 / 2$
$-\operatorname{Pr}_{\mathrm{x} \leftarrow \mathrm{D}}\left[\operatorname{Test}_{\mathrm{i}}(\mathrm{x})=1\right] \approx \operatorname{Pr}_{\mathrm{x} \leftarrow \mathrm{un}^{\text {[}}}\left[\right.$ Test $\left._{\mathrm{i}}(\mathrm{x})=1\right]$ for $\mathrm{i}=1, \ldots$

Pseudorandomness (take 2)

- This is not sufficient in an adversarial setting!
- Who knows what statistical test an attacker will use?
- Cryptographic def' n of pseudorandomness:
- D is pseudorandom if it passes all efficient statistical tests

Pseudorandomness (concrete)

- Let D be a distribution on p-bit strings
- D is (t, ε)-pseudorandom if for all A running in time at most t,

$$
\left|\operatorname{Pr}_{x \leftarrow D}[A(x)=1]-\operatorname{Pr}_{x \leftarrow u_{p}}[A(x)=1]\right| \leq \varepsilon
$$

Pseudorandom generators (PRGs)

- A PRG is an efficient, deterministic algorithm that expands a short, uniform seed into a longer, pseudorandom output
- Useful whenever you have a "small" number of true random bits, and want lots of "randomlooking" bits

PRGs

- Let G be a deterministic, poly-time algorithm that is expanding, i.e., $|\mathrm{G}(\mathrm{x})|=\mathrm{p}(|\mathrm{x}|)>|\mathrm{x}|$

output

PRGs

- G is a PRG iff $\left\{D_{n}\right\}$ is pseudorandom
- $D_{n}=$ the distribution on $p(n)$-bit strings defined by choosing $\mathrm{x} \leftarrow \mathrm{U}_{\mathrm{n}}$ and outputting $\mathrm{G}(\mathrm{x})$
- I.e., for all efficient distinguishers A, there is a negligible function ε such that

$$
\left|\operatorname{Pr}_{x \leftarrow u_{n}}[A(G(x))=1]-\operatorname{Pr}_{y \leftarrow u_{p(n)}}[A(y)=1]\right| \leq \varepsilon(n)
$$

- I.e., no efficient A can distinguish whether it is given $G(x)$ (for uniform x) or a uniform string y !

Example (insecure PRG)

- Let $G(x)=0 . . .0$
- Distinguisher?
- Analysis?

Example (insecure PRG)

- Let $G(x)=x \mid O R($ bits of $x)$
- Distinguisher?
- Analysis?

Do PRGs exist?

- We don't know...
- Would imply $\mathrm{P} \neq \mathrm{NP}$
- We will assume certain algorithms are PRGs
- Recall the 3 principles of modern crypto...
- This is what is done in practice

Where things stand

- We saw that there are some inherent limitations if we want perfect secrecy
- In particular, key must be as long as the message
- We defined computational secrecy, a relaxed notion of security
- Can we overcome prior limitations?

Recall: one-time pad

"Pseudo" one-time pad

Pseudo one-time pad

- Let G be a deterministic algorithm, with $|G(k)|=p(|k|)$
- Gen(1 $\left.{ }^{n}\right)$: output uniform n-bit key k
- Security parameter $n \Rightarrow$ message space $\{0,1\}^{p(n)}$
- $E n c_{k}(m)$: output $G(k) \oplus m$
- $\operatorname{Dec}_{k}(\mathrm{c})$: output $G(\mathrm{k}) \oplus \mathrm{c}$
- Correctness is obvious...

Security of pseudo-OTP?

- Would like to be able to prove security
- Based on the assumption that G is a PRG

Definitions, proofs, and assumptions

- We've defined computational secrecy
- Our goal is to prove that the pseudo OTP meets that definition
- We cannot prove this unconditionally
- Beyond our current techniques...
- Anyway, security clearly depends on G
- Can prove security based on the assumption that G is a pseudorandom generator

PRGs, revisited

- Let G be an efficient, deterministic funktie d_{n} with $|G(k)|=p(|k|)$

For any efficient D , the probabilities that D outputs 1 in each case must be "close"

Proof by reduction

1. Assume G is a pseudorandom generator
2. Assume toward a contradiction that there is an efficient attacker A who "breaks" the pseudo-OTP scheme (as per the definition)
3. Use A as a subroutine to build an efficient D that "breaks" pseudorandomness of G

- By assumption, no such D exists!
\Rightarrow No such A can exist

Alternately...

1. Assume G is a pseudorandom generator
2. Fix some arbitrary, efficient A attacking the pseudo-OTP scheme
3. Use A as a subroutine to build an efficient D attacking G

- Relate the distinguishing gap of D to the success probability of A

4. By assumption, the distinguishing gap of D must be negligible
\Rightarrow Use this to bound the success probability of A

Security theorem

- If G is a pseudorandom generator, then the pseudo one-time pad Π is EAV-secure (i.e., computationally indistinguishable)

The reduction

Analysis

- If A runs in polynomial time, then so does D

Analysis

- Let $\mu(\mathrm{n})=\operatorname{Pr}\left[\operatorname{PrivK}_{\mathrm{A}, \mathrm{n}}(\mathrm{n})=1\right]$
- Claim: when $\mathrm{y}=\mathrm{G}(\mathrm{x})$ for uniform x , then the view of A is exactly as in $\operatorname{PrivK}_{\mathrm{A}, \Pi}(\mathrm{n})$
$\Rightarrow \operatorname{Pr}_{\mathrm{x} \leftarrow \mathrm{Un}_{n}}[\mathrm{D}(\mathrm{G}(\mathrm{x}))=1]=\mu(\mathrm{n})$

The reduction

Analysis

- Let $\mu(\mathrm{n})=\operatorname{Pr}\left[\operatorname{PrivK}_{\mathrm{A}, \mathrm{n}}(\mathrm{n})=1\right]$
- If $y=G(x)$ for uniform x, then the view of A is exactly as in $\operatorname{PrivK}_{\mathrm{A}, \mathrm{n}}(\mathrm{n})$

$$
\Rightarrow \operatorname{Pr}_{\mathrm{x} \leftarrow \mathrm{u}_{n}}[\mathrm{D}(\mathrm{G}(\mathrm{x}))=1]=\mu(\mathrm{n})
$$

- If distribution of y is uniform, then A succeeds with probability exactly $1 / 2$

$$
\Rightarrow \operatorname{Pr}_{\mathrm{y}} \leqslant \mathrm{u}_{\text {p(l] }}[\mathrm{D}(\mathrm{y})=1]=1 / 2
$$

The reduction

Analysis

- Let $\mu(\mathrm{n})=\operatorname{Pr}\left[\operatorname{PrivK}_{\mathrm{A}, \Pi}(\mathrm{n})=1\right]$
- If $y=G(x)$ for uniform x, then the view of A is exactly as in $\operatorname{PrivK}_{\mathrm{A}, \Pi}(\mathrm{n})$

$$
\Rightarrow \operatorname{Pr}_{x \leftarrow U_{n}}[D(G(x))=1]=\mu(n)
$$

- If distribution of y is uniform, then A succeeds with probability exactly $1 / 2$

$$
\Rightarrow \operatorname{Pr}_{y} \leftarrow u_{p(n)}[D(y)=1]=1 / 2
$$

- Since G is pseudorandom:

$$
\begin{array}{r}
|\mu(\mathrm{n})-1 / 2| \leq \operatorname{neg} \mid(\mathrm{n}) \\
\Rightarrow \operatorname{Pr}\left[\operatorname{PrivK}_{\mathrm{A}, \Pi}(\mathrm{n})=1\right] \leq 1 / 2+\operatorname{neg} \mid(\mathrm{n})
\end{array}
$$

Have we gained anything?

- YES: the pseudo-OTP has a key shorter than the message
$-n$ bits vs. $p(n)$ bits
- The fact that the parties internally generate a $\mathrm{p}(\mathrm{n})$-bit temporary string to encrypt/decrypt is irrelevant
- The key is what the parties share in advance
- Parties do not store the $p(n)$-bit temporary value

Recall...

- Perfect secrecy has two limitations/drawbacks
- Key as long as the message
- Key can only be used once
- We have seen how to circumvent the first
- Does the pseudo OTP have the second limitation?
- How can we circumvent the second?

But first...

- Develop an appropriate security definition
- Recall that security definitions have two parts
- Security goal
- Threat model
- We will keep the security goal the same, but strengthen the threat model

Single-message secrecy

Multiple-message secrecy

$c_{t} \leftarrow E \operatorname{Enc}_{k}\left(m_{t}\right)$

A formal definition

- Fix П, A
- Define a randomized exp't PrivKmult ${ }_{\mathrm{A}, \Pi}(\mathrm{n})$:

1. $A\left(1^{n}\right)$ outputs two vectors $\left(m_{0,1}, \ldots, m_{0, t}\right)$ and $\left(m_{1,1}, \ldots, m_{1, t}\right)$

- Require that $\left|m_{0, i}\right|=\left|m_{1, i}\right|$ for all i

2. $k \leftarrow \operatorname{Gen}\left(1^{n}\right), \quad b \leftarrow\{0,1\}$, for all $i: c_{i} \leftarrow \operatorname{Enc}_{k}\left(m_{b,}\right)$
3. $b^{\prime} \leftarrow A\left(c_{1}, \ldots, c_{t}\right)$; A succeeds if $b=b^{\prime}$, and experiment evaluates to 1 in this case

A formal definition

- Π is multiple-message indistinguishable if for all PPT attackers A, there is a negligible function ε such that

$$
\operatorname{Pr}\left[\operatorname{PrivK}{ }^{\text {mult }}{ }_{A, \Pi}(n)=1\right] \leq 1 / 2+\varepsilon(n)
$$

- Exercise: show that the pseudo-OTP is not multiple-message indistinguishable

