EE309 Advanced Programming Techniques for EE

Lecture 18: Pseudorandomness

INSU YUN (윤인수)

School of Electrical Engineering, KAIST

[Slides from Introduction to Cryptography -- MATH/CMSC 456 at UMD]

Core principles of modern crypto

- Formal definitions
 - Precise, mathematical model and definition of what security means
- Assumptions
 - Clearly stated and unambiguous
- Proofs of security
 - Move away from design-break-patch

Defining secure encryption

Crypto definitions (generally)

- Security guarantee/goal
 - What we want to achieve (or what we want to prevent the attacker from achieving)

- Threat model
 - What (real-world) capabilities the attacker is assumed to have

Recall

- A *private-key encryption scheme* is defined by a message space *M* and algorithms (Gen, Enc, Dec):
 - Gen (key-generation algorithm): generates k
 - Enc (encryption algorithm): takes key k and message $m \in \mathcal{M}$ as input; outputs ciphertext c

 $c \leftarrow \text{Enc}_k(m)$

 Dec (decryption algorithm): takes key k and ciphertext c as input; outputs m.
 m := Dec_k(c)

Private-key encryption

Goal of secure encryption?

 How would you define what it means for encryption scheme (Gen, Enc, Dec) over message space *M* to be secure?

- Against a (single) ciphertext-only attack

Secure encryption?

- "Impossible for the attacker to learn the key"
 - The key is a means to an end, not the end itself
 - Necessary (to some extent) but not sufficient
 - Easy to design an encryption scheme that hides the key completely, but is insecure
 - Can design schemes where most of the key is leaked, but the scheme is still secure

Secure encryption?

• "Impossible for the attacker to learn the plaintext from the ciphertext"

- What if the attacker learns 90% of the plaintext?

The right definition

- "Regardless of any *prior* information the attacker has about the plaintext, the ciphertext should leak no *additional* information about the plaintext"
 - How to formalize?

Perfect secrecy

Probability review

- *Random variable (r.v.):* variable that takes on (discrete) values with certain probabilities
- Probability distribution for a r.v. specifies the probabilities with which the variable takes on each possible value
 - Each probability must be between 0 and 1
 - The probabilities must sum to 1

Probability review

- *Event*: a particular occurrence in some experiment
 Pr[E]: probability of event E
- Conditional probability: probability that one event occurs, given that some other event occurred
 Pr[A | B] = Pr[A and B]/Pr[B]
- Two random variables X, Y are *independent* if for all x, y: Pr[X=x | Y=y] = Pr[X=x]

Probability review

- Law of total probability: say $E_1, ..., E_n$ are a *partition* of all possibilities. Then for any A: $Pr[A] = \sum_i Pr[A \text{ and } E_i] = \sum_i Pr[A | E_i] \cdot Pr[E_i]$
- Bayes's theorem
 Pr[A | B] = Pr[B | A] · Pr[A]/Pr[B]

Probability distributions

- Let M be the random variable denoting the value of the message
 - M ranges over \mathcal{M}
 - Context dependent!
 - Reflects the likelihood of different messages being sent, given the attacker's prior knowledge

– E.g.,

Probability distributions

- Fix some encryption scheme (Gen, Enc, Dec), and some distribution for M
- Consider the following (randomized) experiment:
 - 1. Generate a key k using Gen
 - 2. Choose a message m, according to the given distribution
 - 3. Compute $c \leftarrow Enc_k(m)$
- Let C be a random variable denoting the value of the ciphertext in this experiment
- This defines a distribution on the ciphertext!

Perfect secrecy (informal)

 "Regardless of any *prior* information the attacker has about the plaintext, the ciphertext should leak no *additional* information about the plaintext"

Perfect secrecy (formal)

Encryption scheme (Gen, Enc, Dec) with message space *M* and ciphertext space *C* is *perfectly secret* if for every distribution over *M*, every m ∈ *M*, and every c ∈ *C* with Pr[C=c] > 0, it holds that

$$Pr[M = m | C = c] = Pr[M = m].$$

• I.e., the distribution of M does not change conditioned on observing the ciphertext

Example 3

- Consider the shift cipher, and the distribution
 Pr[M = 'one'] = ½, Pr[M = 'ten'] = ½
- Take m = 'ten' and c = 'rqh'

Pr[M = 'ten' | C = 'rqh'] = ?
 = 0
 ≠ Pr[M = 'ten']

Conclusion

The shift cipher is not perfectly secret!
 At least not for 2-character messages

How to construct a perfectly secret scheme?
 – One-time pad (proven by Shannon in 1949)

One-time pad

- Let $\mathcal{M} = \{0, 1\}^n$
- Gen: choose a uniform key $k \in \{0,1\}^n$
- $Enc_k(m) = k \oplus m$
- $Dec_k(c) = k \oplus c$
- Correctness: $Dec_k(Enc_k(m)) = k \oplus (k \oplus m)$ $= (k \oplus k) \oplus m = m$

One-time pad

Perfect secrecy of one-time pad

- Fix arbitrary distribution over $\mathcal{M} = \{0,1\}^n$, and arbitrary m, $c \in \{0,1\}^n$
- Pr[M = m | C = c] = ?
 = Pr[C = c | M = m] · Pr[M = m]/Pr[C = c]
- $\Pr[C = c]$ = $\Sigma_{m'} \Pr[C = c \mid M = m'] \cdot \Pr[M = m']$ = $\Sigma_{m'} \Pr[K = m' \oplus c \mid M = m'] \cdot \Pr[M = m']$ = $\Sigma_{m'} 2^{-n} \cdot \Pr[M = m']$ = 2^{-n}

Perfect secrecy of one-time pad

• Fix arbitrary distribution over $\mathcal{M} = \{0,1\}^n$, and arbitrary m, $c \in \{0,1\}^n$

One-time pad

• The one-time pad achieves perfect secrecy!

- One-time pad has historically been used in the real world
 - E.g., "red phone" between DC and Moscow

- Not currently used!
 - Why not?

One-time pad

- Several limitations
 - The key is as long as the message
 - Only secure if each key is used to encrypt a single message
 - (Trivially broken by a known-plaintext attack)

⇒ Parties must share keys of (total) length equal to the (total) length of all the messages they might ever send

Optimality of the one-time pad

• Theorem: if (Gen, Enc, Dec) with message space \mathcal{M} is perfectly secret, then $|\mathcal{K}| \ge |\mathcal{M}|$.

Where do we stand?

- We defined the notion of perfect secrecy
- We proved that the one-time pad achieves it!
- We proved that the one-time pad is optimal!
 I.e., we cannot improve the key length
- Are we done?
- Do better by relaxing the definition
 But in a meaningful way...

Perfect secrecy

- Requires that *absolutely no information* about the plaintext is leaked, even to eavesdroppers with unlimited computational power
 - Has some inherent drawbacks
 - Seems unnecessarily strong

Computational secrecy

- Would be ok if a scheme leaked information with tiny probability to eavesdroppers with bounded computational resources
- I.e., we can relax perfect secrecy by

 Allowing security to "fail" with tiny probability
 - Restricting attention to "efficient" attackers

Bounded attackers?

- Consider brute-force search of key space; assume one key can be tested per clock cycle
- Desktop computer $\approx 2^{57}$ keys/year
- Supercomputer $\approx 2^{80}$ keys/year
- Supercomputer since Big Bang $\approx 2^{112}$ keys
 - Restricting attention to attackers who can try 2¹¹² keys is fine!
- Modern key space: 2¹²⁸ keys or more...

Roadmap

 We will give an alternate (but equivalent) definition of perfect secrecy

– Using a randomized experiment

• That definition has a natural relaxation

• Warning: the material gets much more difficult now

Perfect indistinguishability

- Let Π=(Gen, Enc, Dec) be an encryption scheme with message space *M*, and A an adversary
- Define a randomized exp't $PrivK_{A,\Pi}$:
 - 1. A outputs $m_0, m_1 \in \mathcal{M}$
 - 2. $k \leftarrow Gen, b \leftarrow \{0,1\}, c \leftarrow Enc_k(m_b)$
 - 3. b' \leftarrow A(c)

Challenge ciphertext

Adversary A *succeeds* if b = b', and we say the experiment evaluates to 1 in this case

Perfect indistinguishability

• Easy to succeed with probability ½ ...

• Π is *perfectly indistinguishable* if for all attackers (algorithms) A, it holds that $Pr[PrivK_{A,\Pi} = 1] = \frac{1}{2}$

Computational indistinguishability (concrete version)

• Π is (t, ε) -*indistinguishable* if for all attackers A running in time at most t, it holds that Pr[PrivK_{A, Π} = 1] $\leq \frac{1}{2} + \varepsilon$

 Note: (∞, 0)-indistinguishable = perfect indistinguishability

– Relax definition by taking t < ∞ and ε > 0

Pseudorandomness

Pseudorandomness

 Important building block for computationally secure encryption

• Important concept in cryptography

What does "random" mean?

- What does "uniform" mean?
- Which of the following is a uniform string?
 - -0101010101010101
 - -0010111011100110
 - 000000000000000
- If we generate a uniform 16-bit string, each of the above occurs with probability 2⁻¹⁶

What does "uniform" mean?

• "Uniformity" is not a property of a *string*, but a property of a *distribution*

- A distribution on *n*-bit strings is a function D: $\{0,1\}^n \rightarrow [0,1]$ such that $\Sigma_x D(x) = 1$
 - The *uniform* distribution on *n*-bit strings, denoted U_n , assigns probability 2⁻ⁿ to every $x \in \{0,1\}^n$

What does "pseudorandom" mean?

- Informal: cannot be distinguished from uniform (i.e., random)
- Which of the following is pseudorandom?
 - -0101010101010101
 - -0010111011100110
- Pseudorandomness is a property of a *distribution*, not a *string*

Pseudorandomness (take 1)

- Fix some distribution D on *n*-bit strings
 x ← D means "sample x according to D"
- Historically, D was considered pseudorandom if it "passed a bunch of statistical tests"

$$- \Pr_{x \leftarrow D}[1^{st} \text{ bit of } x \text{ is } 1] \approx \frac{1}{2}$$

-
$$Pr_{x \leftarrow D}$$
[parity of x is 1] $\approx \frac{1}{2}$

- $Pr_{x \leftarrow D}[Test_i(x)=1] \approx Pr_{x \leftarrow U_n}[Test_i(x)=1]$ for i = 1, ...

Pseudorandomness (take 2)

- This is not sufficient in an adversarial setting!
 - Who knows what statistical test an attacker will use?
- Cryptographic def'n of pseudorandomness:
 D is pseudorandom if it passes <u>all efficient</u> statistical tests

Pseudorandomness (concrete)

• Let D be a distribution on *p*-bit strings

 D is (t, ε)-pseudorandom if for all A running in time at most t,

$$| \Pr_{x \leftarrow D}[A(x)=1] - \Pr_{x \leftarrow U_p}[A(x)=1] | \leq \varepsilon$$

Pseudorandom generators (PRGs)

- A PRG is an efficient, deterministic algorithm that expands a *short, uniform seed* into a *longer, pseudorandom* output
 - Useful whenever you have a "small" number of true random bits, and want lots of "randomlooking" bits

PRGs

 Let G be a deterministic, poly-time algorithm that is *expanding*, i.e., |G(x)| = p(|x|) > |x|

PRGs

- G is a PRG iff {D_n} is pseudorandom
 - D_n = the distribution on p(n)-bit strings defined by choosing x ← U_n and outputting G(x)
- I.e., for all efficient distinguishers A, there is a negligible function ε such that
 | Pr_{x ← Un}[A(G(x))=1] Pr_{y ← Up(n)}[A(y)=1] | ≤ ε(n)
- I.e., no efficient A can distinguish whether it is given G(x) (for uniform x) or a uniform string y!

Example (insecure PRG)

- Let G(x) = 0....0
 - Distinguisher?
 - Analysis?

Example (insecure PRG)

- Let G(x) = x | OR(bits of x)
 - Distinguisher?
 - Analysis?

Do PRGs exist?

• We don't know...

– Would imply $P \neq NP$

- We will *assume* certain algorithms are PRGs
 - Recall the 3 principles of modern crypto...
 - This is what is done in practice

Where things stand

- We saw that there are some inherent limitations if we want perfect secrecy

 In particular, key must be as long as the message
- We defined computational secrecy, a relaxed notion of security

• Can we overcome prior limitations?

Recall: one-time pad

"Pseudo" one-time pad

Pseudo one-time pad

- Let G be a deterministic algorithm, with
 |G(k)| = p(|k|)
- Gen(1ⁿ): output uniform n-bit key k

– Security parameter n \Rightarrow message space {0,1}^{p(n)}

- $Enc_k(m)$: output $G(k) \oplus m$
- $\text{Dec}_k(c)$: output $G(k) \oplus c$

• Correctness is obvious...

Security of pseudo-OTP?

Would like to be able to prove security

- Based on the *assumption* that G is a PRG

Definitions, proofs, and assumptions

- We've *defined* computational secrecy
- Our goal is to *prove* that the pseudo OTP meets that definition
- We cannot prove this unconditionally
 - Beyond our current techniques...
 - Anyway, security clearly depends on G
- Can prove security based on the assumption that G is a pseudorandom generator

PRGs, revisited

• Let G be an efficient, deterministic funktion \mathbf{k}_n with |G(k)| = p(|k|)

For any efficient D, the probabilities that D outputs 1 in each case must be "close"

Proof by reduction

- 1. Assume G is a pseudorandom generator
- 2. Assume toward a contradiction that there is an efficient attacker A who "breaks" the pseudo-OTP scheme (as per the definition)
- 3. Use A as a subroutine to build an efficient D that "breaks" pseudorandomness of G
 - By assumption, no such D exists!
 - \Rightarrow No such A can exist

Alternately...

- 1. Assume G is a pseudorandom generator
- 2. Fix some arbitrary, efficient A attacking the pseudo-OTP scheme
- 3. Use A as a subroutine to build an efficient D attacking G
 - Relate the distinguishing gap of D to the success probability of A
- 4. By assumption, the distinguishing gap of D must be negligible

 \Rightarrow Use this to bound the success probability of A

Security theorem

 If G is a pseudorandom generator, then the pseudo one-time pad Π is EAV-secure (i.e., computationally indistinguishable)

The reduction

• If A runs in polynomial time, then so does D

- Let $\mu(n) = \Pr[\operatorname{PrivK}_{A,\Pi}(n) = 1]$
- Claim: when y=G(x) for uniform x, then the view of A is *exactly* as in PrivK_{A,Π}(n)
 ⇒ Pr_{x ← Un}[D(G(x))=1] = μ(n)

- Let $\mu(n) = \Pr[\operatorname{PrivK}_{A,\Pi}(n) = 1]$
- If y=G(x) for uniform x, then the view of A is exactly as in $PrivK_{A,\Pi}(n)$ $\Rightarrow Pr_{x \leftarrow U_{n}}[D(G(x))=1] = \mu(n)$
- If distribution of y is uniform, then A succeeds with probability exactly ¹/₂

 $\Rightarrow \mathsf{Pr}_{\mathsf{y} \leftarrow \mathsf{U}_{\mathsf{p}(\mathsf{n})}}[\mathsf{D}(\mathsf{y})=1] = \frac{1}{2}$

- Let $\mu(n) = \Pr[\operatorname{PrivK}_{A,\Pi}(n) = 1]$
- If y=G(x) for uniform x, then the view of A is exactly as in $PrivK_{A,\Pi}(n)$ $\Rightarrow Pr_{x \in U_{n}}[D(G(x))=1] = \mu(n)$
- If distribution of y is uniform, then A succeeds with probability exactly ¹/₂

$$\Rightarrow \Pr_{y \leftarrow U_{p(n)}}[D(y)=1] = \frac{1}{2}$$

• Since G is pseudorandom:

 $| \mu(n) - \frac{1}{2} | \le negl(n)$ $\Rightarrow Pr[PrivK_{A,\Pi}(n) = 1] \le \frac{1}{2} + negl(n)$

Have we gained anything?

 YES: the pseudo-OTP has a key shorter than the message

n bits vs. p(n) bits

- The fact that the parties *internally* generate a p(n)-bit temporary string to encrypt/decrypt is irrelevant
 - The key is what the parties share in advance
 - Parties do not store the p(n)-bit temporary value

Recall...

- Perfect secrecy has two limitations/drawbacks
 - Key as long as the message
 - Key can only be used once
- We have seen how to circumvent the first
- Does the pseudo OTP have the second limitation?
- How can we circumvent the second?

But first...

• Develop an appropriate security definition

- Recall that security definitions have two parts
 - Security goal
 - Threat model
- We will keep the security goal the same, but strengthen the threat model

Multiple-message secrecy

A formal definition

- Fix Π, A
- Define a randomized exp't PrivK^{mult}_{A,Π}(n):
 - 1. A(1ⁿ) outputs two **vectors** ($m_{0,1}$, ..., $m_{0,t}$) and ($m_{1,1}$, ..., $m_{1,t}$)
 - Require that $|m_{0,i}| = |m_{1,i}|$ for all i
 - 2. $k \leftarrow \text{Gen}(1^n)$, $b \leftarrow \{0,1\}$, for all i: $c_i \leftarrow \text{Enc}_k(m_{b,i})$
 - 3. b' $\leftarrow A(c_1, ..., c_t)$; A succeeds if b = b', and experiment evaluates to 1 in this case

A formal definition

 Π is multiple-message indistinguishable if for all PPT attackers A, there is a negligible function ε such that

$$\Pr[\operatorname{PrivK^{mult}}_{A,\Pi}(n) = 1] \le \frac{1}{2} + \varepsilon(n)$$

• Exercise: show that the pseudo-OTP is *not* multiple-message indistinguishable