
EE309 Advanced Programming 
Techniques for EE

Lecture 18:
Pseudorandomness

INSU YUN (윤인수)

School of Electrical Engineering, KAIST

[Slides from Introduction to Cryptography -- MATH/CMSC 456 at UMD]



Core principles of modern crypto

• Formal definitions
– Precise, mathematical model and definition of 

what security means

• Assumptions
– Clearly stated and unambiguous

• Proofs of security
– Move away from design-break-patch



Defining secure encryption



Crypto definitions (generally)

• Security guarantee/goal
– What we want to achieve (or what we want to 

prevent the attacker from achieving)

• Threat model
– What (real-world) capabilities the attacker is 

assumed to have



Recall

• A private-key encryption scheme is defined by a 
message space M and algorithms (Gen, Enc, Dec):
– Gen (key-generation algorithm): generates k
– Enc (encryption algorithm): takes key k and message 

m ∈ M as input; outputs ciphertext c
c ← Enck(m)

– Dec (decryption algorithm): takes key k and 
ciphertext c as input; outputs m.

m := Deck(c)



Private-key encryption
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Goal of secure encryption?

• How would you define what it means for 
encryption scheme (Gen, Enc, Dec) over 
message space M to be secure?
– Against a (single) ciphertext-only attack



Secure encryption?

• “Impossible for the attacker to learn the key”
– The key is a means to an end, not the end itself
– Necessary (to some extent) but not sufficient
– Easy to design an encryption scheme that 

hides the key completely, but is insecure
– Can design schemes where most of the key is 

leaked, but the scheme is still secure



Secure encryption?

• “Impossible for the attacker to learn the 
plaintext from the ciphertext”
– What if the attacker learns 90% of the plaintext?



The right definition

• “Regardless of any prior information the 
attacker has about the plaintext, the ciphertext 
should leak no additional information about 
the plaintext”
– How to formalize?



Perfect secrecy



Probability review

• Random variable (r.v.): variable that takes on 
(discrete) values with certain probabilities

• Probability distribution for a r.v. specifies the 
probabilities with which the variable takes on each 
possible value
– Each probability must be between 0 and 1
– The probabilities must sum to 1



Probability review

• Event: a particular occurrence in some experiment
– Pr[E]: probability of event E

• Conditional probability: probability that one event 
occurs, given that some other event occurred
– Pr[A | B] = Pr[A and B]/Pr[B]

• Two random variables X, Y are independent if
for all x, y: Pr[X=x | Y=y] = Pr[X=x]



Probability review

• Law of total probability: say E1, …, En are a partition
of all possibilities. Then for any A:

Pr[A] = Σi Pr[A and Ei] = Σi Pr[A | Ei] · Pr[Ei] 

• Bayes’s theorem
Pr[A | B] = Pr[B | A] · Pr[A]/Pr[B]



Probability distributions

• Let M be the random variable denoting the 
value of the message
– M ranges over M
– Context dependent!
– Reflects the likelihood of different messages being 

sent, given the attacker’s prior knowledge
– E.g., 

Pr[M = “attack today”] = 0.7
Pr[M = “don’t attack”] = 0.3



Probability distributions

• Fix some encryption scheme (Gen, Enc, Dec), and 
some distribution for M

• Consider the following (randomized) experiment:
1. Generate a key k using Gen
2. Choose a message m, according to the given distribution
3. Compute c ← Enck(m)

• Let C be a random variable denoting the value of the 
ciphertext in this experiment

• This defines a distribution on the ciphertext!



Perfect secrecy (informal)

• “Regardless of any prior information the 
attacker has about the plaintext, the ciphertext
should leak no additional information about 
the plaintext”



Perfect secrecy (formal)

• Encryption scheme (Gen, Enc, Dec) with message 
space M and ciphertext space C is perfectly secret if 
for every distribution over M, every m ∈ M, and 
every c ∈ C with Pr[C=c] > 0, it holds that

Pr[M = m | C = c] = Pr[M = m].

• I.e., the distribution of M does not change 
conditioned on observing the ciphertext



Example 3

• Consider the shift cipher, and the distribution 
Pr[M = ‘one’] = ½,  Pr[M = ‘ten’] = ½ 

• Take m = ‘ten’ and c = ‘rqh’

• Pr[M = ‘ten’ | C = ‘rqh’] = ?
= 0
≠ Pr[M = ‘ten’]



Conclusion

• The shift cipher is not perfectly secret!
– At least not for 2-character messages

• How to construct a perfectly secret scheme?
– One-time pad (proven by Shannon in 1949)



One-time pad

• Let M = {0,1}n

• Gen: choose a uniform key k ∈ {0,1}n

• Enck(m) = k ⊕ m              
• Deck(c) = k ⊕ c

• Correctness:
Deck( Enck(m) ) = k ⊕ (k ⊕ m) 

= (k ⊕ k) ⊕ m = m



One-time pad
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Perfect secrecy of one-time pad

• Fix arbitrary distribution over M = {0,1}n, and 
arbitrary m, c ∈ {0,1}n

• Pr[M = m | C = c] = ?
= Pr[C = c | M = m] · Pr[M = m]/Pr[C = c]

• Pr[C = c]
= Σm’ Pr[C = c | M = m’] · Pr[M = m’]
= Σm’ Pr[K = m’ ⊕ c | M = m’] · Pr[M = m’]
= Σm’ 2-n · Pr[M = m’] 
= 2-n



Perfect secrecy of one-time pad

• Fix arbitrary distribution over M = {0,1}n, and 
arbitrary m, c ∈ {0,1}n

• Pr[M = m | C = c] = ?
= Pr[C = c | M = m] · Pr[M = m]/Pr[C = c]
= Pr[K = m ⊕ c | M = m] · Pr[M = m] / 2-n

= 2-n · Pr[M = m] / 2-n

= Pr[M = m]



One-time pad

• The one-time pad achieves perfect secrecy!

• One-time pad has historically been used in the 
real world
– E.g., “red phone” between DC and Moscow

• Not currently used!
– Why not?



One-time pad

• Several limitations 
– The key is as long as the message
– Only secure if each key is used to encrypt a 

single message
• (Trivially broken by a known-plaintext attack)

⇒ Parties must share keys of (total) length equal 
to the (total) length of all the messages they 
might ever send



Optimality of the one-time pad

• Theorem: if (Gen, Enc, Dec) with message 
space M is perfectly secret, then |K| ≥ |M|.



Where do we stand?

• We defined the notion of perfect secrecy
• We proved that the one-time pad achieves it!
• We proved that the one-time pad is optimal!

– I.e., we cannot improve the key length
• Are we done?

• Do better by relaxing the definition 
– But in a meaningful way…



Perfect secrecy

• Requires that absolutely no information about 
the plaintext is leaked, even to eavesdroppers 
with unlimited computational power
– Has some inherent drawbacks
– Seems unnecessarily strong



Computational secrecy

• Would be ok if a scheme leaked information 
with tiny probability to eavesdroppers with 
bounded computational resources

• I.e., we can relax perfect secrecy by
– Allowing security to “fail” with tiny probability 
– Restricting attention to “efficient” attackers



Bounded attackers?

• Consider brute-force search of key space; 
assume one key can be tested per clock cycle

• Desktop computer ≈ 257 keys/year
• Supercomputer ≈ 280 keys/year
• Supercomputer since Big Bang ≈ 2112 keys

– Restricting attention to attackers who can try 2112

keys is fine!

• Modern key space: 2128 keys or more…



Roadmap

• We will give an alternate (but equivalent) 
definition of perfect secrecy
– Using a randomized experiment

• That definition has a natural relaxation

• Warning: the material gets much more 
difficult now



Perfect indistinguishability

• Let Π=(Gen, Enc, Dec) be an encryption 
scheme with message space M, and A an 
adversary

• Define a randomized exp’t PrivKA,Π:
1. A outputs m0, m1 ∈ M
2. k ← Gen,   b ← {0,1},  c ← Enck(mb)
3. b’ ← A(c)
Adversary A succeeds if b = b’, and we say the 
experiment evaluates to 1 in this case

Challenge ciphertext



Perfect indistinguishability

• Easy to succeed with probability ½ …

• Π is perfectly indistinguishable if for all 
attackers (algorithms) A, it holds that 

Pr[PrivKA,Π = 1] = ½ 



Computational indistinguishability
(concrete version)

• Π is (t, ε)-indistinguishable if for all attackers A 
running in time at most t, it holds that 

Pr[PrivKA,Π = 1] ≤ ½ + ε

• Note: (∞, 0)-indistinguishable = perfect 
indistinguishability
– Relax definition by taking t < ∞ and ε > 0



“Pseudo” one-time pad 
(i.e., Stream cipher)

“pseudo” key

p bits

⊕
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ciphertext

p bits
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Pseudorandomness



Pseudorandomness

• Important building block for computationally 
secure encryption

• Important concept in cryptography



What does “random” mean?

• What does “uniform” mean?
• Which of the following is a uniform string?

– 0101010101010101
– 0010111011100110
– 0000000000000000

• If we generate a uniform 16-bit string, each of 
the above occurs with probability 2-16



What does “uniform” mean?

• “Uniformity” is not a property of a string, but 
a property of a distribution

• A distribution on n-bit strings is a function 
D: {0,1}n → [0,1] such that Σx D(x) = 1
– The uniform distribution on n-bit strings, denoted 

Un, assigns probability 2-n to every x ∈ {0,1}n



What does “pseudorandom” mean?

• Informal: cannot be distinguished from 
uniform (i.e., random)

• Which of the following is pseudorandom?
– 0101010101010101
– 0010111011100110
– 0000000000000000

• Pseudorandomness is a property of a 
distribution, not a string



Pseudorandomness (take 1)

• Fix some distribution D on n-bit strings
– x ← D means “sample x according to D”

• Historically, D was considered pseudorandom 
if it “passed a bunch of statistical tests”
– Prx ← D[1st bit of x is 1] ≈ ½ 
– Prx ← D[parity of x is 1] ≈ ½
– Prx ← D[Testi(x)=1] ≈ Prx ← Un[Testi(x)=1] for i = 1, …



Pseudorandomness (take 2)

• This is not sufficient in an adversarial setting!
– Who knows what statistical test an attacker 

will use?

• Cryptographic def’n of pseudorandomness:
– D is pseudorandom if it passes all efficient

statistical tests



Pseudorandomness (concrete)

• Let D be a distribution on p-bit strings

• D is (t, ε)-pseudorandom if for all A running in 
time at most t, 

| Prx ← D[A(x)=1] - Prx ← Up[A(x)=1] | ≤ ε



Pseudorandom generators (PRGs)

• A PRG is an efficient, deterministic algorithm 
that expands a short, uniform seed into a 
longer, pseudorandom output
– Useful whenever you have a “small” number of 

true random bits, and want lots of “random-
looking” bits



PRGs

• Let G be a deterministic, poly-time algorithm 
that is expanding, i.e., |G(x)| = p(|x|) > |x|

seed

G

output



PRGs

• G is a PRG iff {Dn} is pseudorandom
– Dn = the distribution on p(n)-bit strings defined by 

choosing x ← Un and outputting G(x)

• I.e., for all efficient distinguishers A, there is a 
negligible function ε such that

| Prx ← Un[A(G(x))=1] - Pry ← Up(n)[A(y)=1] | ≤ ε(n)

• I.e., no efficient A can distinguish whether it is 
given G(x) (for uniform x) or a uniform string y!



Example (insecure PRG)

• Let G(x) = 0….0
– Distinguisher?
– Analysis?



Example (insecure PRG)

• Let G(x) = x | OR(bits of x)
– Distinguisher?
– Analysis?



Do PRGs exist?

• We don’t know…
– Would imply P ≠ NP

• We will assume certain algorithms are PRGs
– Recall the 3 principles of modern crypto…
– This is what is done in practice



Where things stand

• We saw that there are some inherent 
limitations if we want perfect secrecy
– In particular, key must be as long as the message

• We defined computational secrecy, a 
relaxed notion of security

• Can we overcome prior limitations?



Recall: one-time pad

key

p bits

⊕ ciphertext

p bits
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p bits



“Pseudo” one-time pad

“pseudo” key

p bits

⊕

G

key

n bits

ciphertext

p bits

message

p bits



Pseudo one-time pad

• Let G be a deterministic algorithm, with 
|G(k)| = p(|k|)

• Gen(1n): output uniform n-bit key k
– Security parameter n ⇒ message space {0,1}p(n)

• Enck(m): output G(k) ⊕ m
• Deck(c): output G(k) ⊕ c

• Correctness is obvious…



Security of pseudo-OTP?

• Would like to be able to prove security
– Based on the assumption that G is a PRG



Definitions, proofs, and assumptions

• We’ve defined computational secrecy
• Our goal is to prove that the pseudo OTP 

meets that definition
• We cannot prove this unconditionally

– Beyond our current techniques…
– Anyway, security clearly depends on G

• Can prove security based on the assumption 
that G is a pseudorandom generator



PRGs, revisited

• Let G be an efficient, deterministic function 
with |G(k)| = p(|k|)

D

y

b

y ← Up(n)

k ← Un

G

For any efficient D, the probabilities that D 
outputs 1 in each case must be “close”



Proof by reduction

1. Assume G is a pseudorandom generator
2. Assume toward a contradiction that there is 

an efficient attacker A who “breaks” the 
pseudo-OTP scheme (as per the definition)

3. Use A as a subroutine to build an efficient D 
that “breaks” pseudorandomness of G
– By assumption, no such D exists!
⇒ No such A can exist



Alternately…

1. Assume G is a pseudorandom generator
2. Fix some arbitrary, efficient A attacking the 

pseudo-OTP scheme
3. Use A as a subroutine to build an efficient D 

attacking G
– Relate the distinguishing gap of D to the success 

probability of A
4. By assumption, the distinguishing gap of D must 

be negligible
⇒ Use this to bound the success probability of A



Security theorem

• If G is a pseudorandom generator, then the 
pseudo one-time pad Π is EAV-secure (i.e., 
computationally indistinguishable)



The reduction

m0, m1

b←{0,1}mb

c
b’

if (b=b’)
output 1 D

y

A



Analysis

• If A runs in polynomial time, then so does D 



Analysis

• Let µ(n) = Pr[PrivKA,Π(n) = 1] 
• Claim: when y=G(x) for uniform x, then the 

view of A is exactly as in PrivKA,Π(n)
⇒ Prx ← Un[D(G(x))=1] = µ(n)



The reduction

m0, m1

b←{0,1}mb

c
b’

if (b=b’)
output 1 D

y

A

k ← Un

G

Π-Enc



Analysis

• Let µ(n) = Pr[PrivKA,Π(n) = 1] 
• If y=G(x) for uniform x, then the view of A is 

exactly as in PrivKA,Π(n)
⇒ Prx ← Un[D(G(x))=1] = µ(n)

• If distribution of y is uniform, then A succeeds 
with probability exactly ½ 
⇒ Pry ← Up(n)[D(y)=1] = ½ 



The reduction

m0, m1

b←{0,1}mb

c
b’

if (b=b’)
output 1 D

y

A

y ← Up(n)

OTP-Enc



Analysis

• Let µ(n) = Pr[PrivKA,Π(n) = 1] 
• If y=G(x) for uniform x, then the view of A is 

exactly as in PrivKA,Π(n)
⇒ Prx ← Un[D(G(x))=1] = µ(n)

• If distribution of y is uniform, then A succeeds 
with probability exactly ½ 
⇒ Pry ← Up(n)[D(y)=1] = ½ 

• Since G is pseudorandom:
| µ(n) – ½ | ≤ negl(n)

⇒ Pr[PrivKA,Π(n) = 1] ≤ ½ + negl(n)



Have we gained anything?

• YES: the pseudo-OTP has a key shorter than 
the message
– n bits vs. p(n) bits

• The fact that the parties internally generate a 
p(n)-bit temporary string to encrypt/decrypt is 
irrelevant
– The key is what the parties share in advance
– Parties do not store the p(n)-bit temporary value



Recall…

• Perfect secrecy has two limitations/drawbacks
– Key as long as the message
– Key can only be used once

• We have seen how to circumvent the first
• Does the pseudo OTP have the second 

limitation?

• How can we circumvent the second?



But first…

• Develop an appropriate security definition

• Recall that security definitions have two parts
– Security goal
– Threat model

• We will keep the security goal the same, but 
strengthen the threat model



Single-message secrecy

k
c

m
c ← Enck(m)

k



Multiple-message secrecy

k
c1, …, ct

m1, …, mt
c1 ← Enck(m1)

…
ct ← Enck(mt)

k



A formal definition

• Fix Π, A
• Define a randomized exp’t PrivKmult

A,Π(n):
1. A(1n) outputs two vectors (m0,1, …, m0,t) and

(m1,1, …, m1,t)
• Require that |m0,i| = |m1,i| for all i

2. k ← Gen(1n),   b ← {0,1},  for all i: ci ← Enck(mb,i)
3. b’ ← A(c1, …, ct);  A succeeds if b = b’, and 

experiment evaluates to 1 in this case



A formal definition

• Π is multiple-message indistinguishable if for 
all PPT attackers A, there is a negligible 
function ε such that  

Pr[PrivKmult
A,Π(n) = 1] ≤ ½ + ε(n)

• Exercise: show that the pseudo-OTP is not
multiple-message indistinguishable
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