EE309 Advanced Programming Techniques for EE

Lecture 19: PRF, PRP, Hash, and PRNG INSU YUN (윤인수)

School of Electrical Engineering, KAIST

[Slides from Introduction to Computer Security (18-487) at CMU]

The Landscape

Jargon in Cryptography

Good News: OTP has perfect secrecy

Thm:The One Time Pad is Perfectly SecureMust show: $\Pr [E(k, m_0) = c] = \Pr [E(k, m_1) = c]$ where $|\mathsf{M}| = \{0,1\}^m$

$$\Pr[E(k,m_0)=c] = \Pr[k \oplus m_0=c] \tag{1}$$

$$=\frac{|k \in \{0,1\}^m : k \oplus m_0 = c|}{\{0,1\}^m}$$
(2)

<u>Information-</u> <u>Theoretic</u> Secrecy

<u>Proof:</u>

$$=\frac{1}{2^m}\tag{3}$$

$$\Pr[E(k,m_1)=c] = \Pr[k \oplus m_1=c]$$
(4)

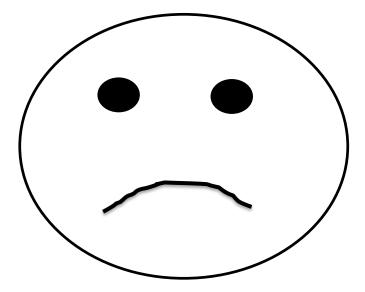
$$=\frac{|k \in \{0,1\}^m : k \oplus m_1 = c|}{\{0,1\}^m} \tag{5}$$

$$=\frac{1}{2^m}\tag{6}$$

Therefore, $\Pr[E(k, m_0) = c] = \Pr[E(k, m_1) = c]$

The "Bad News" Theorem

<u>Theorem</u>: Perfect secrecy requires |K| >= |M|

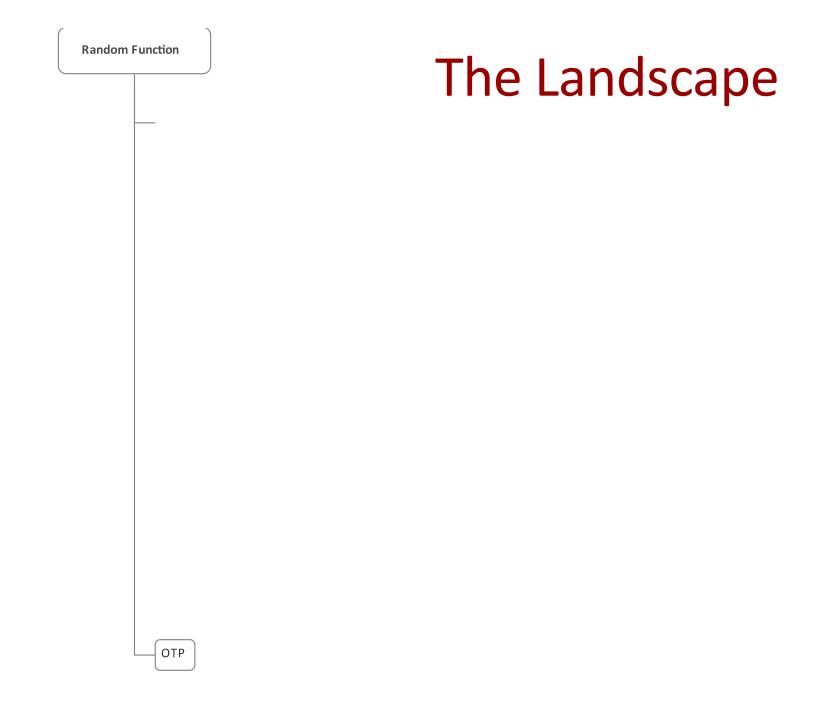


Kerckhoffs' Principle

The system must be *practically*, if not mathematically, indecipherable

- Security is only preserved against efficient adversaries running in (probabilistic) polynomial time (PPT) and space
- Adversaries can succeed with some small probability (that is small enough it is hopefully not a concern)
 - Ex: Probability of guessing a password

"A scheme is secure if every PPT adversary succeeds in breaking the scheme with only negligible probability"



Pseudorandom Number Generators

Amplify small amount of randomness to large "pseudo-random" number with a <u>pseudo-random number generator</u> (PRNG)

> Let $S : \{0, 1\}^s$ and $K : \{0, 1\}^k$ $G : S \to K$ where $k \gg s$

One Way Functions

Defn: A function *f* is one-way if:

- *1. f* can be computed in polynomial time
- 2. No polynomial time adversary *A* can invert with more than negligible probability

$$\Pr[f(\mathbf{A}(f(x))) = f(x)] < \epsilon$$

Note: mathematically, a function is one-way if it is not one-to-one. Here we mean something stronger.

Candidate One-Way Functions

Factorization. Let N=p*q, where |p| = |q| = |N|/2. We believe factoring N is hard.

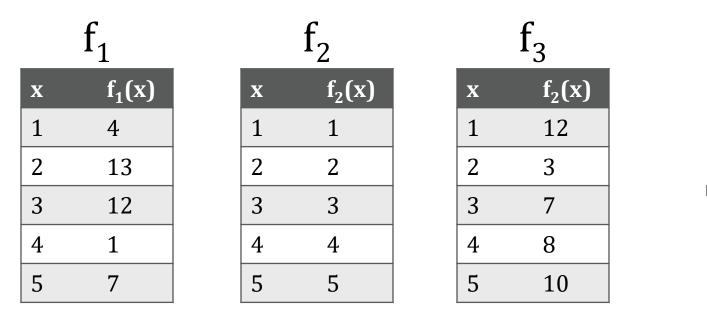
 Discrete Log. Let p be a prime, x be a number between 0 and p. Given g^x mod p, it is believed hard to recover x.

The relationship

PRNG exist ⇔ OWF exist

Thinking About Functions

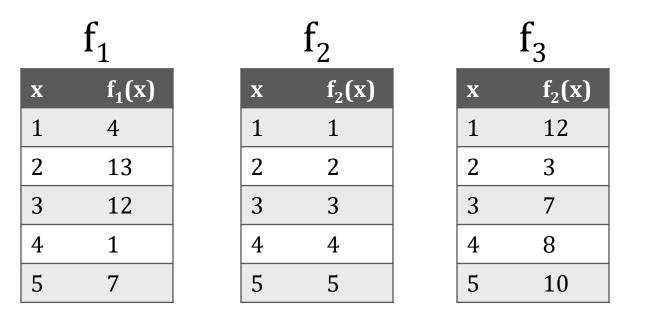
A function is just a mapping from inputs to outputs:



Which function is not random?

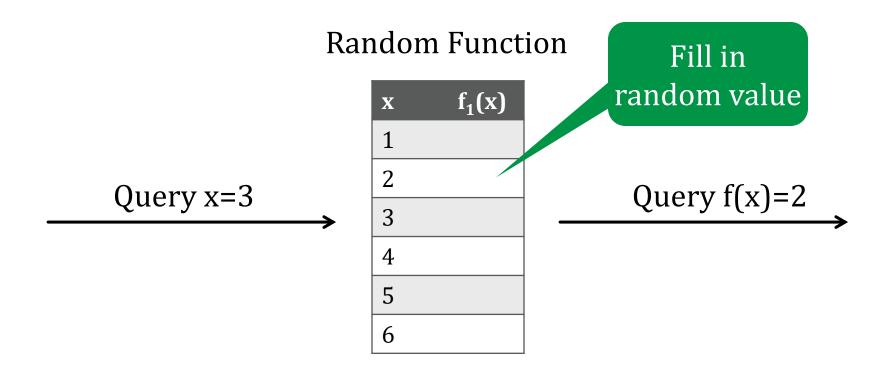
Thinking About Functions

A function is just a mapping from inputs to outputs:



What is random is the way we *pick* a function

Game-based Interpretation



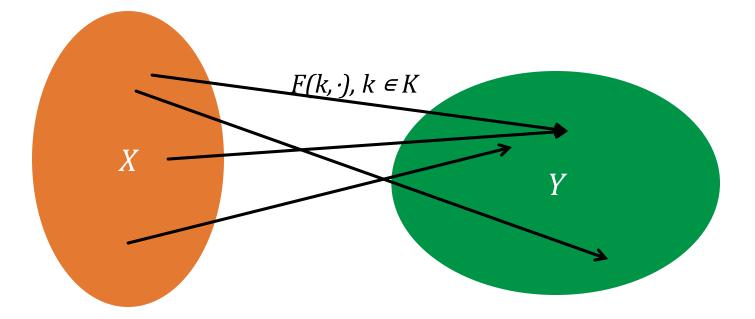
Note asking x=1, 2, 3, ... gives us our OTP randomness.

PRFs

Pseudo Random <u>Function</u> (PRF) defined over (*K*,*X*,*Y*):

$$F: K \times X \to Y$$

such that there exists an "efficient" algorithm to evaluate F(k,x)



Pseudorandom functions are not to be confused with pseudorandom generators (PRGs). The guarantee of a PRG is that a single output appears random if the input was chosen at random. On the other hand, the guarantee of a PRF is that all its outputs appear random, regardless of how the corresponding inputs were chosen, as long as the function was drawn at random from the PRF family.

- wikipedia

PRNG exist \Leftrightarrow OWF exist \Leftrightarrow PRF exists

Abstractly: PRPs

Pseudo Random Permutation (PRP) defined over (K,X)

$E: K \times X \to X$

such that:

- 1. Exists "efficient" deterministic algorithm to evaluate *E(k,x)*
- 2. The function $E(k, \cdot)$ is one-to-one
- 3. Exists "efficient" inversion algorithm *D(k,y)*



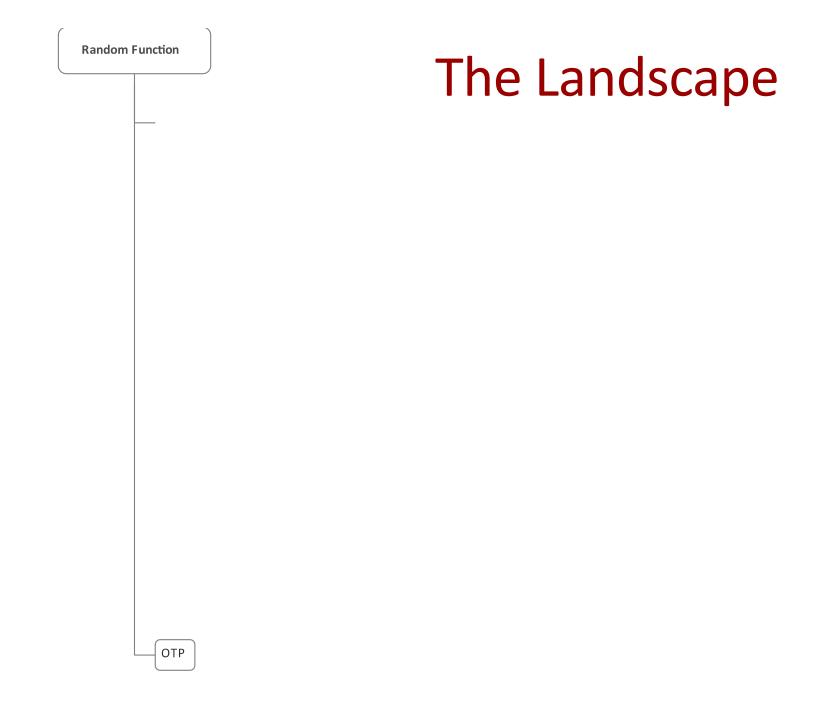
Running example

• Example PRPs: 3DES, AES, ...

AES: $K \times X \to X$ where $K = X = \{0, 1\}^{128}$

3DES: $K \times X \to X$ where $X = \{0, 1\}^{64}, K = \{0, 1\}^{168}$

- Functionally, *any* PRP is also a PRF.
 - PRP is a PRF when *X* = *Y* and is efficiently invertible



Security and Indistinguishability

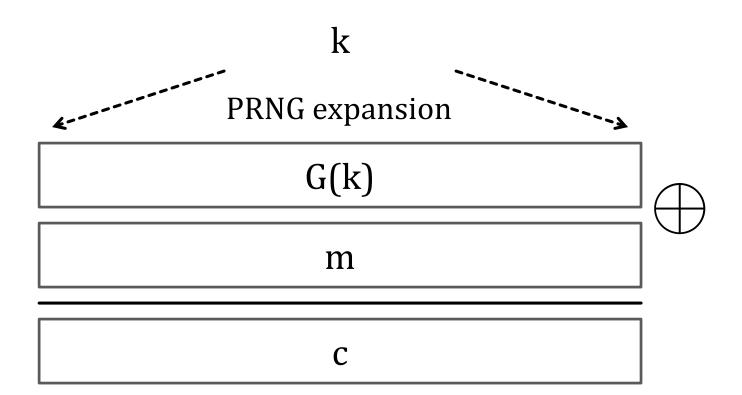
Kerckhoffs' Principle

The system must be *practically*, if not mathematically, indecipherable

- Security is only preserved against efficient adversaries running in polynomial time and space
- Adversaries can succeed with some small probability (that is small enough it is hopefully not a concern)
 - Ex: Probability of guessing a password

"A scheme is secure if every PPT adversary succeeds in breaking the scheme with only negligible probability"

A Practical OTP



$$c = E(k, m) = m \oplus G(k)$$
$$D(k, c) = c \oplus G(k)$$

Question

Can a PRNG-based pad have perfect secrecy?

- 1. Yes, if the PRNG is secure
- 2. No, there are no ciphers with perfect secrecy
- 3. No, the key size is shorter than the message

PRG Security

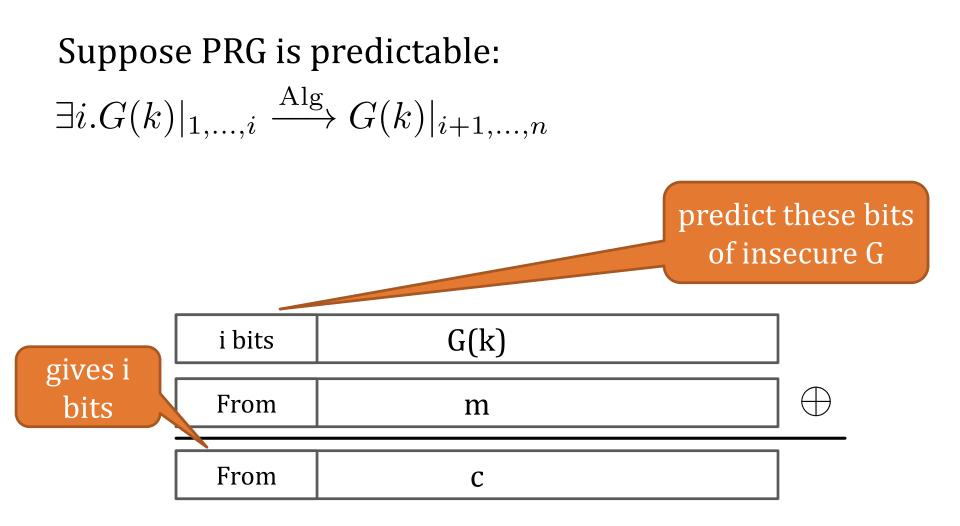
Recall PRNG: Let $S : \{0, 1\}^s$ and $K : \{0, 1\}^k$ $G : S \to K$ where $k \gg s$

One requirement: Output of PRG is unpredictable (mimics a perfect source of randomness)

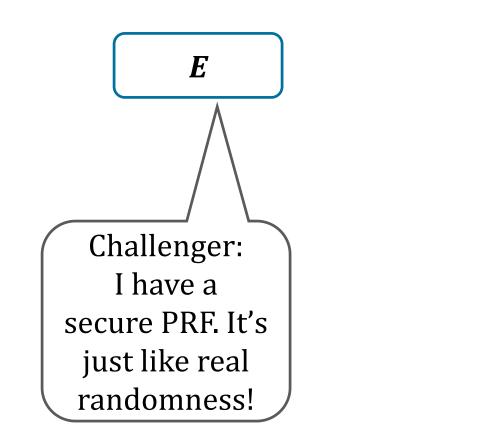
It should be impossible for any Alg to predict bit i+1 given the first i bits: $\exists i.G(k)|_{1,...,i} \xrightarrow{\text{Alg}} G(k)|_{i+1,...,n}$ Even predicting 1

bit is insecure

Example

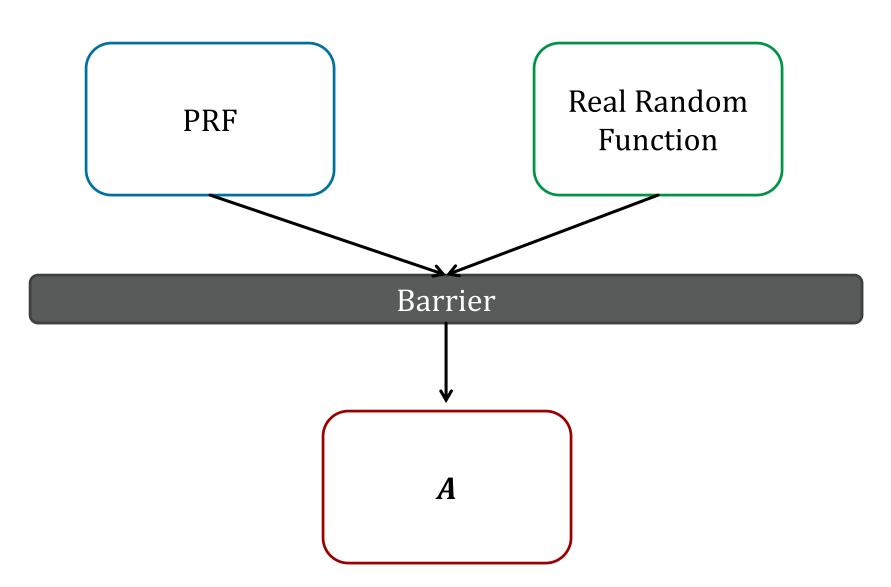


Adversarial Indistinguishability Game

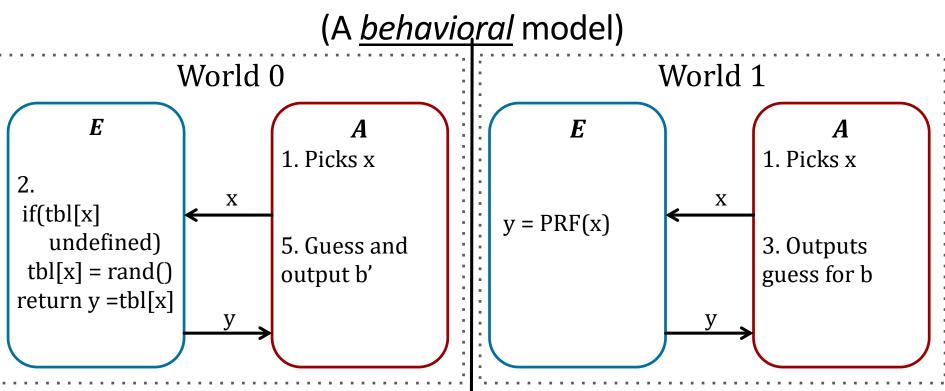




Secure PRF: The Intuition



PRF Security Game



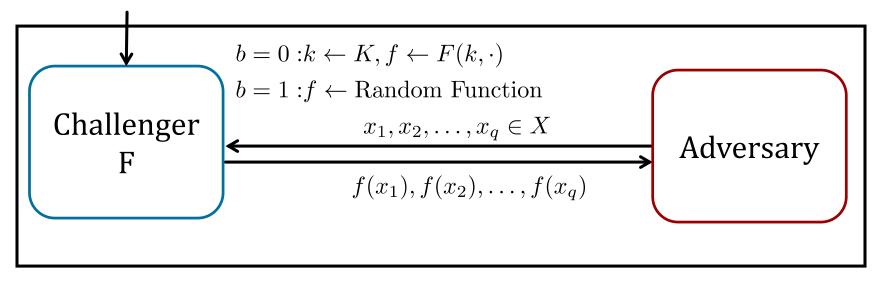
A doesn't know which world he is in, but wants to figure it out.

For b=0,1:
$$W_b := [$$
 event that $A(W_b) = 1]$ Always 1
Adv_{SS} $[A,E] := |$ Pr $[W_0] - Pr[W_1] | \in [0,1]$

Secure PRF: An Alternate Interpretation

For *b* = 0,1 define experiment *EXP(b)* as:

 $b \in \{0, 1\}$



Def: PRF is a secure PRF if for all efficient *A*:

 $\mathbf{Adv}_{PRF}[A, F] := |\Pr[Exp(0) = 1] - \Pr[Exp(1) = 1]| < \epsilon$

Quiz

Let $F: K \times X \rightarrow \{0, 1\}^{128}$ be a secure PRF. Is the following G a secure PRF?

$$G(k, x) = \begin{cases} 0^{128} & \text{if } x = 0\\ F(k, x) & \text{otherwise} \end{cases}$$

No, it is easy to distinguish G from a random function
 Yes, an attack on G would also break F
 It depends on F

Semantic Security of Ciphers

What is a secure cipher?

Attackers goal: recover one plaintext (for now)

Attempt #1: Attacker cannot recover key

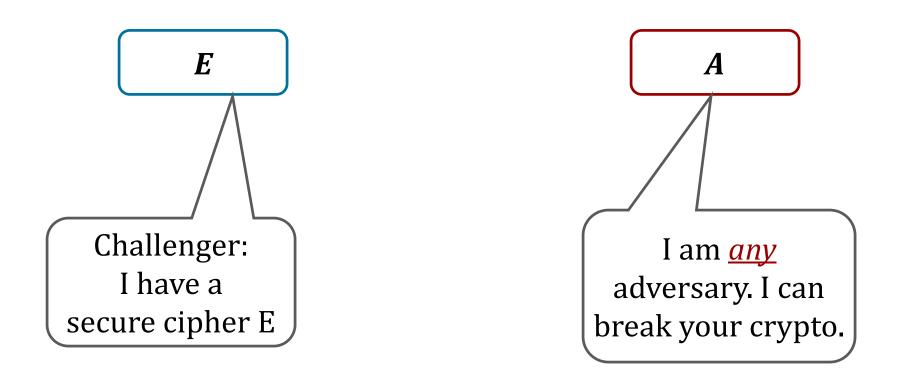
Insufficient: E(k,m) = m

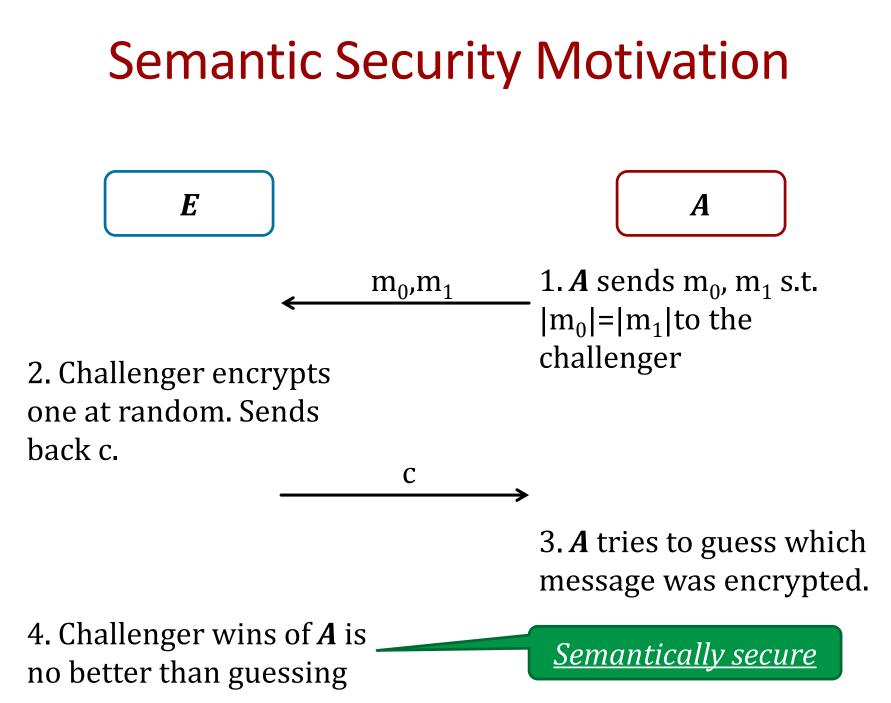
Attempt #2: Attacker cannot recover all of plaintext

Insufficient: $E(k,m_0 || m_1) = m_0 || E(k,m_1)$

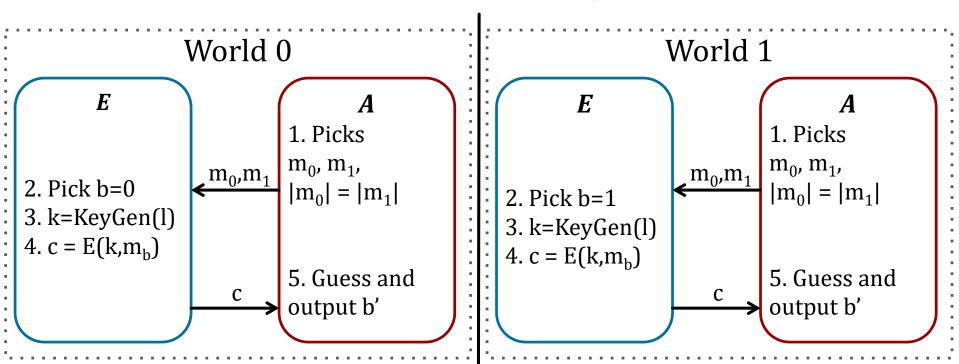
Recall Shannon's Intuition: *c* should reveal no information about *m*

Adversarial Indistinguishability Game



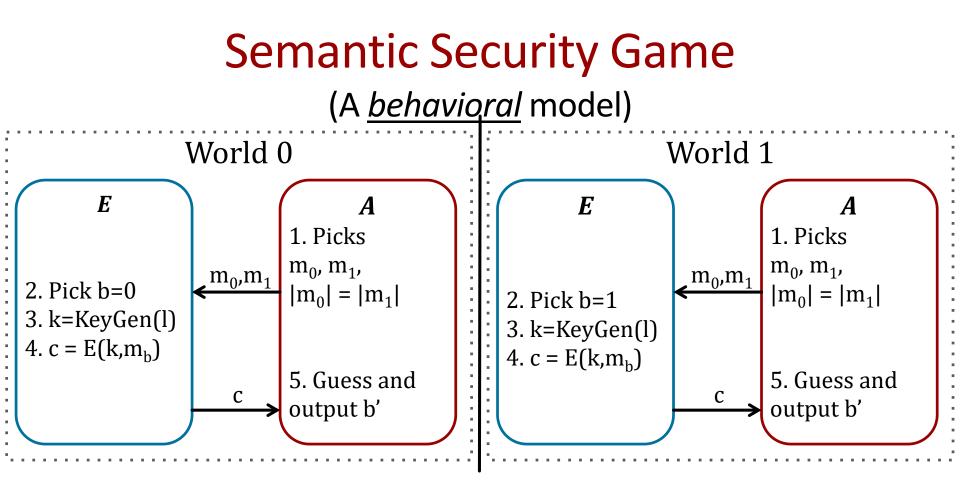


Semantic Security Game



A doesn't know which world he is in, but wants to figure it out.

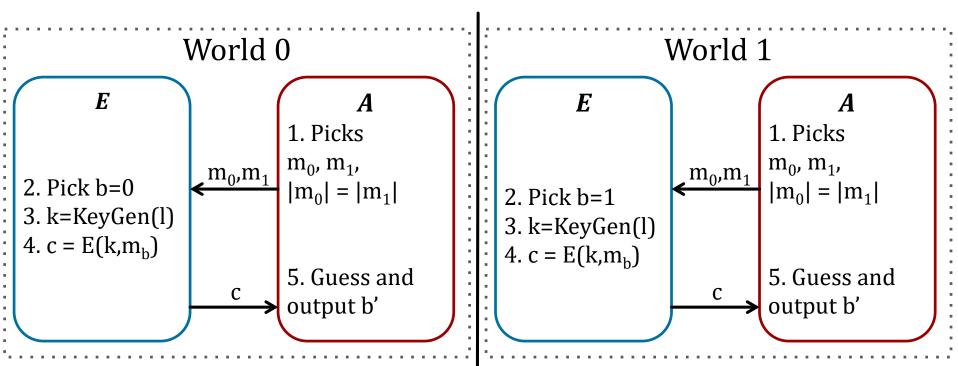
Semantic security is a behavioral model getting at any *A* behaving the same in either world when *E* is secure.



A doesn't know which world he is in, but wants to figure it out.

For b=0,1:
$$W_b := [$$
 event that $A(W_b) = 1]$ Always 1
Adv_{SS} $[A,E] := |$ Pr $[W_0] - Pr[W_1] | \in [0,1]$

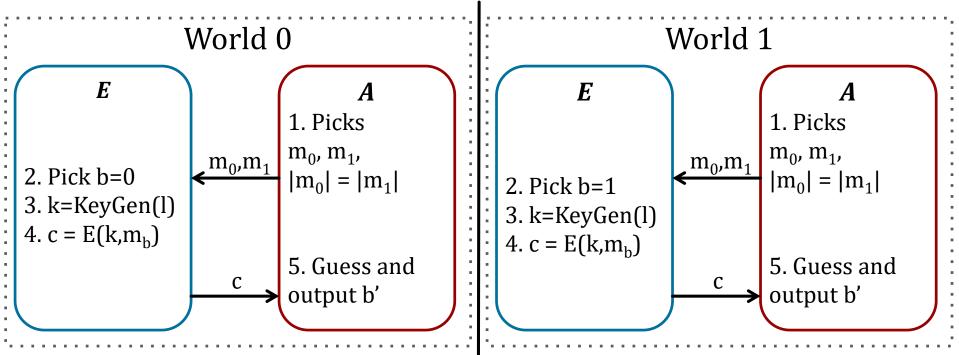
Example 1: Guessing



A guesses.
$$W_b := [$$
 event that $A(W_b) = 1]$. So $W_0 = .5$, and $W_1 = .5$
 $Adv_{SS}[A,E] := | .5 - .5 | = 0$

Example 1: A is right 75% of time World 0 World 1 E A E A 1. Picks 1. Picks $m_0, m_1,$ m₀, m₁, m₀,m₁ _m₀,m₁ 2. Pick b=0 $|m_0| = |m_1|$ $|m_0| = |m_1|$ 2. Pick b=1 3. k=KeyGen(l) 3. k=KeyGen(l) 4. $c = E(k,m_{\rm h})$ 4. $c = E(k, m_{\rm h})$ 5. Guess and 5. Guess and С С output b' output b'

Example 1: **A** is right 25% of time



A guesses. $W_b := [$ event that $A(W_b) = 1]$. So $W_0 = .75$, and $W_1 = .25$ $Adv_{SS}[A,E] := | .75 - .25 | = .5$ Note for W_0 , A is wrong more often than right. Ashould switch guesses.

Semantic Security

$\underline{Given:} \\ For b=0,1: W_b := [event that <math>A(W_b) = 1] \\ Adv_{SS}[A,E] := |Pr[W_0] - Pr[W_1]| \in [0,1]$

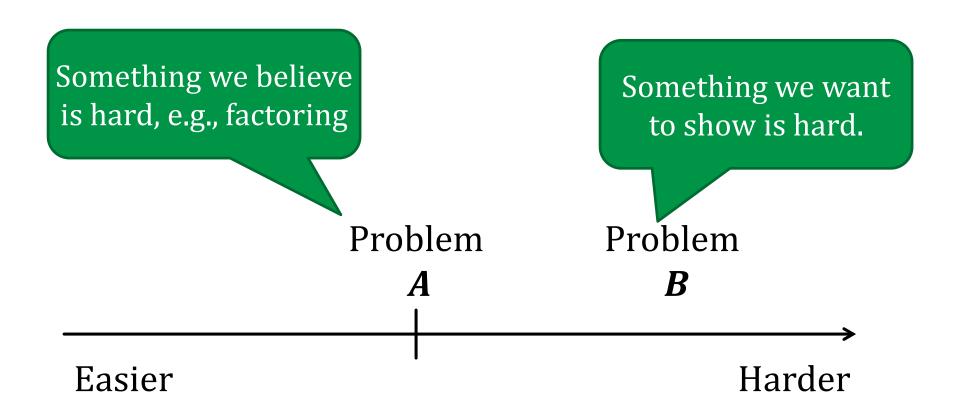
<u>Defn</u>:

E is *semantically secure* if for all efficient *A*:

Adv_{SS}[*A*, *E*] is negligible.

⇒ for all explicit m_0 , $m_1 \in M$: { E(k,m_0) } ≈_p { E(k,m_1) }

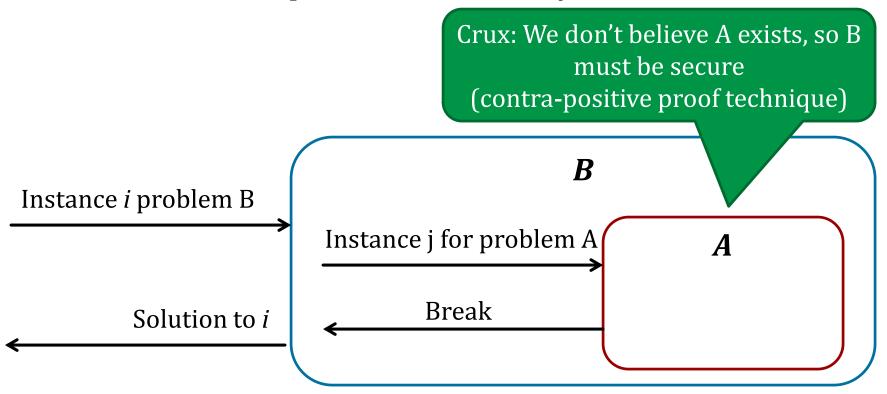
This is what it means to be secure against eavesdroppers. No partial information is leaked



Proving Security

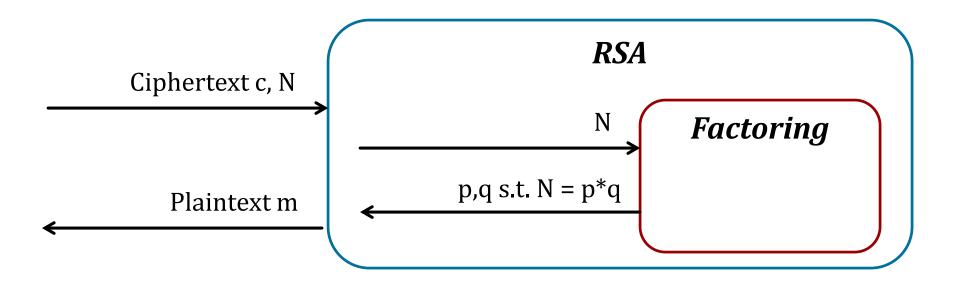
Security Reductions

<u>Reduction</u>: Problem **A** is at least as hard as **B** if an algorithm for solving **A** efficiently (if it existed) could also be used as a subroutine to solve problem **B** efficiently.



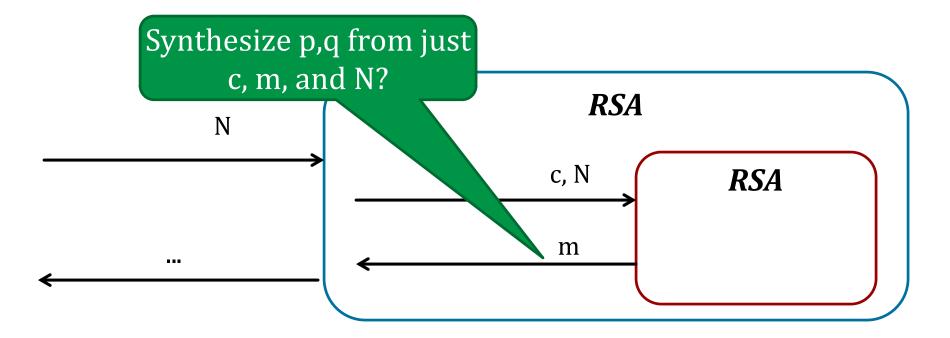
Example

<u>Reduction</u>: Problem **Factoring (A)** is at least as hard as **RSA** (**B**) if an algorithm for solving **Factoring (A)** efficiently (if it existed) could also be used as a subroutine to solve problem **RSA (B)** efficiently.

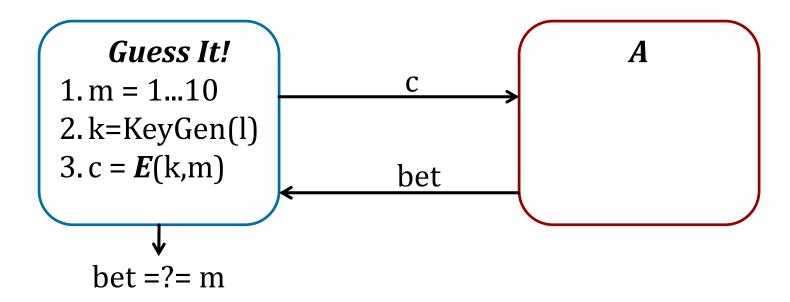


What's unknown ...

<u>Reduction</u>: Problem **RSA (A)** is at least as hard as **Factoring**(B) if an algorithm for solving **RSA (A)** efficiently (if it existed) could also be used as a subroutine to solve problem **Factoring (B)** efficiently.



Games and Reductions



Suppose *A* is in a guessing game. Guess It! uses *E* to encrypt. How can we prove, in this setting, that *E* is secure?

<u>**Reduction:</u></u> If** *A* **does better than 1/10, we break** *E* **in the semantic security game. Showing security of** *E* **reduces to showing if** *A* **exists, it could break the semantic security game. (Equivalently, if** *E* **is semantically secure, then the probability** *A* **wins is at most 10%.)</u>**

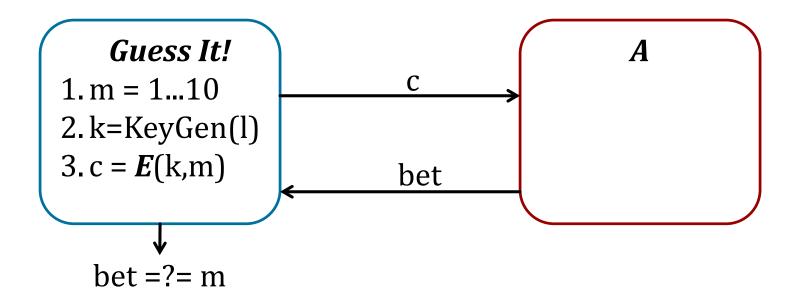
Note: The "type" of A is A: c -> bet

Idea

<u>Reduction</u>: We build an adversary **B** that uses **A** as a subroutine. Our adversary **B** has the property if **A** wins at Guess It! with probability significantly greater than 10%, **B** will have a non-negligible advantage in our semantic security game.

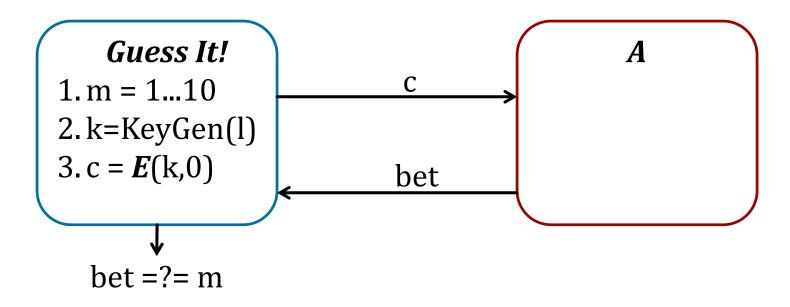
- If *E* secure, Guess It! is secure.
- Equivalently, if Guess It! insecure, *E* is insecure

The Real Version



In the <u>real</u> version, A always gets an encryption of the real message. - Pr[A wins in <u>real</u> version] = p₀

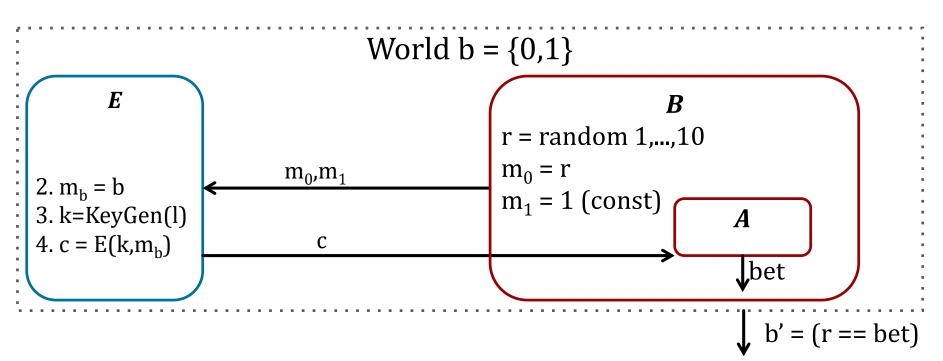
Idealized Version



In the ideal version, **A** always gets an encryption of a constant, say 1. (A still only wins if it gets *m* correct.)

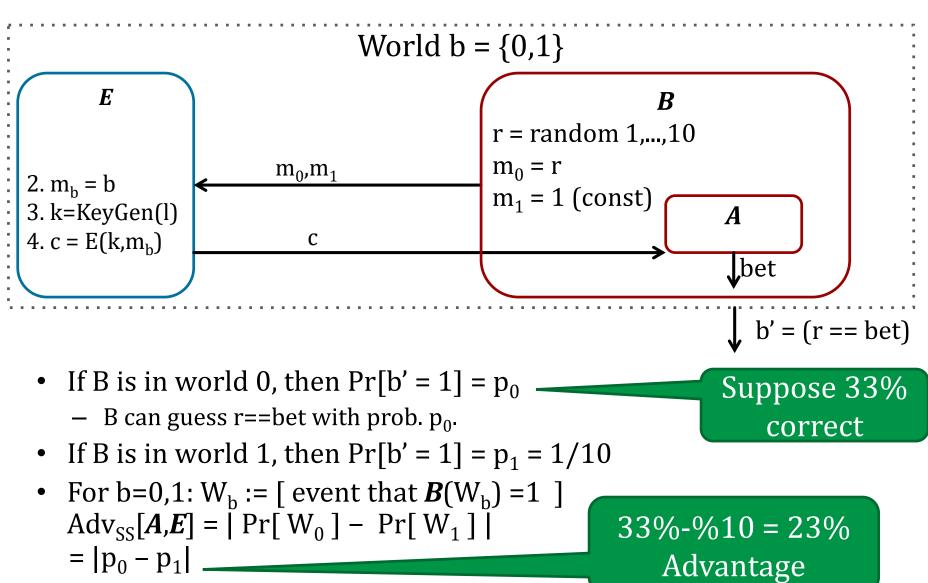
- $Pr[A \text{ wins in Idealized Version}] = p_1 = 1/10$

Reduction



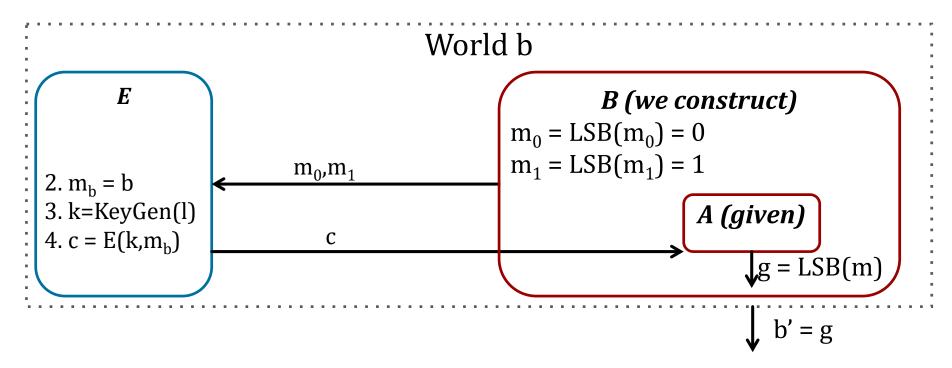
- If B is in world 0, then Pr[b' = 1] = p₀
 B can guess r==bet with prob. p₀.
- If B is in world 1, then $Pr[b' = 1] = p_1 = 1/10$
- For b=0,1: $W_b := [$ event that $B(W_b) = 1]$ Adv_{SS}[A,E] = | Pr $[W_0] - Pr[W_1] |$ $= |p_0 - p_1|$

Reduction



Reduction Example 2

Suppose efficient A can always deduce LSB of PT from CT. Then E = (E,D) is not semantically secure.



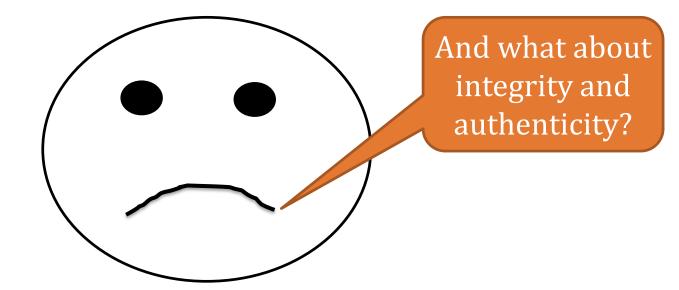
 $Adv_{SS}[A,E] = |Pr[W_0] - Pr[W_1]| = |0 - 1| = 1$

Questions?

Thought

The "Bad News" Theorem

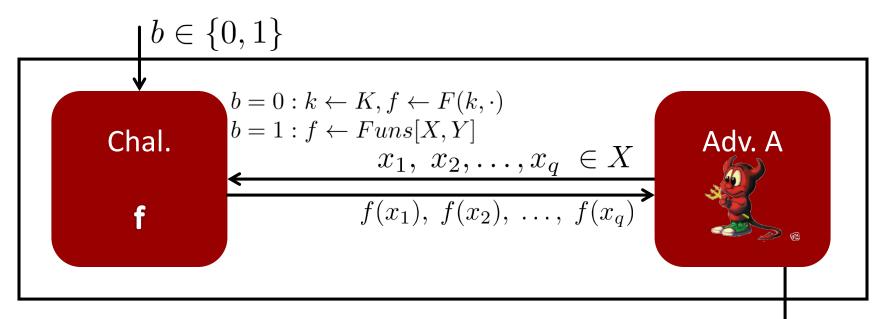
<u>Theorem</u>: Perfect secrecy requires |K| >= |M|



In practice, we usually shoot for <u>computational security</u>.

Secure PRF: Definition

• For *b* = 0,1 define experiment *EXP(b)* as:



• Def: *F* is a secure PRF if for all "efficient" A: $\bigvee^{b' \in \{0,1\}} Adv_{PRF}[A,F] := |Pr[EXP(0) = 1] - Pr[EXP(1) = 1]|$ EXP(b) is "negligible".

Quiz

Let $F: K \times X \rightarrow \{0, 1\}^{128}$ be a secure PRF. Is the following G a secure PRF?

$$G(k, x) = \begin{cases} 0^{128} & \text{if } x = 0\\ F(k, x) & \text{otherwise} \end{cases}$$

No, it is easy to distinguish G from a random function
 Yes, an attack on G would also break F
 It depends on F

Secure PRPs (secure block cipher)

• Let $E: K \times X \to Y$ be a PRP(X = Y)

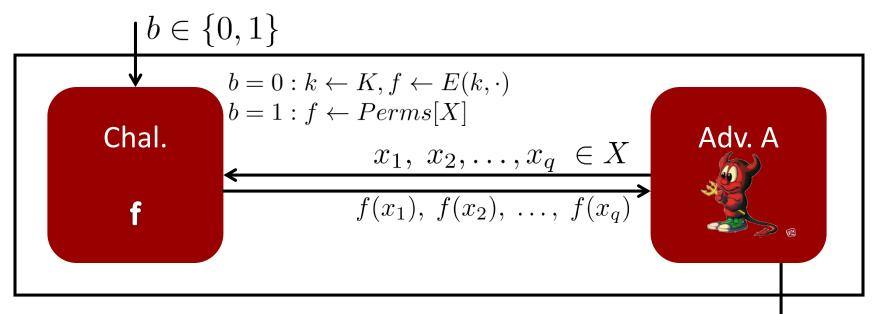
 $\begin{cases} Perms[X] : \text{the set of all } \underline{\text{one-to-one}} \text{ functions from } X \text{ to } Y \\ S_F = \{E(k, \cdot) \quad \text{s.t.} \quad k \in K\} \subseteq Perms[X] \end{cases}$

• <u>Intuition:</u> a PRP is **secure** if

A random function in Perms[X] is indistinguishable from a random function in S_F

Secure PRP: (secure block cipher)

• For b = 0,1 define experiment EXP(b) as:



• Def: E is a secure PRP if for all "efficient" A: $\int b' \in \{0, 1\}$ $Adv_{PRP}[A, E] := |Pr[EXP(0) = 1] - Pr[EXP(1) = 1]|$ EXP(b) is "negligible". Modern Notions: Indistinguishability and Semantic Security