EE309 Advanced Programming Techniques for EE

Lecture 20: Block cipher

INSU YUN (윤인수)

School of Electrical Engineering, KAIST

What is a block cipher?

Block ciphers are the crypto work horse

Canonical examples:

1. 3DES: n = 64 bits, k = 168 bits

2. AES: n = 128 bits, k = 128, 192, 256 bits

Block ciphers built by iteration

R(k, m) is called a *round function* Ex: 3DES (n=48), AES128 (n=10)

Performance: Stream vs. block ciphers

Crypto++ 5.6.0 [Wei Dai]

AMD Opteron, 2.2 GHz (Linux)

	Cipher	Block/key size	Throughput [MB/s]
St	RC4		126
rea	RC4 Salsa20/12 Sosemanuk		643
m	Sosemanuk		727

Blc	3DES	64/168	13
ock	AES128	128/128	109

Block ciphers

The Data Encryption Standard (DES)

History of DES

- **1970s**: Horst <u>Feistel</u> designs Lucifer at IBM key = 128 bits, block = 128 bits
- 1973: The National Bureau of Standards (NBS) asks for block cipher proposals.

IBM submits variant of Lucifer.

- **1976:** NBS adopts DES as federal standard key = 56 bits, block = 64 bits
- 1997: DES broken by exhaustive search
- 2000: NIST adopts Rijndael as AES to replace DES. AES currently widely deployed in banking, commerce and Web

DES: core idea – Feistel network

Given one-way functions $f_1, \ldots, f_d : \{0, 1\}^n \to \{0, 1\}^n$

Goal: build <u>invertible</u> function $F: \{0,1\}^{2n} \rightarrow \{0,1\}^{2n}$

In symbols:
$$\left\{ \begin{array}{l} R_i = f_i(R_{i-1}) \oplus L_{i-1} \\ L_i = R_{i-1} \end{array} \right.$$

Feistel network - inverse

Claim: $f_1, \ldots, f_d : \{0, 1\}^n \to \{0, 1\}^n$

Feistel function *F* is invertible $F: \{0,1\}^{2n} \to \{0,1\}^{2n}$

Proof: construct inverse $\begin{cases} R_i = \\ L_i = \end{cases}$

$$R_i =$$
 $L_i =$

Decryption circuit

- Inversion is basically the same circuit, with f_1 , ..., f_d applied in reverse order
- General method for building invertible functions (block ciphers) from arbitrary functions.
- Used in many block ciphers ... but not AES

Recall from Last Time: Block Ciphers are (Modeled As) PRPs

Pseudo Random Permutation (PRP) defined over (K,X)

$$E: K \times X \to X$$

such that:

- 1. Exists "efficient" deterministic algorithm to evaluate E(k,x)
- 2. The function $E(k, \cdot)$ is one-to-one
- 3. Exists "efficient" inversion algorithm D(k,y)

Luby-Rackoff Theorem (1985)

 $f: K \times \{0,1\}^n \to \{0,1\}^n$ is a secure PRF

 \Rightarrow 3-round Feistel $F: K^3 \times \{0,1\}^{2n} \rightarrow \{0,1\}^{2n}$

is a secure PRP

DES: 16 round Feistel network

$$f_1, \dots, f_{16} : \{0, 1\}^{32} \to \{0, 1\}^{32} \text{ and } f_i(x) = \mathbf{F}(k_i, x)$$

16 round Feistel network

To invert, use keys in reverse order

The function $F(k_i, x)$

The S-boxes

$$S_i: \{0,1\}^6 \to \{0,1\}^4$$
 e.g., 011011 \to 1001

S ₅		Middle 4 bits of input															
		0000	0001	0010	0011	0100	0101	0110	0111	1000	1001	1010	1011	1100	1101	1110	1111
	00	0010	1100	0100	0001	0111	1010	1011	0110	1000	0101	0011	1111	1101	0000	1110	1001
		1110	1011	0010	1100	0100	0111	1101	0001	0101	0000	1111	1010	0011	1001	1000	0110
Outer bits	10	0100	0010	0001	1011	1010	1101	0111	1000	1111	1001	1100	0101	0110	0011	0000	1110
	11	1011	1000	1100	0111	0001	1110	0010	1101	0110	1111	0000	1001	1010	0100	0101	0011

The S-boxes

- Alan Konheim (one of the designers of DES) commented, "We sent the S-boxes off to Washington. They came back and were all different."
- 1990: (Re-)Discovery of differential cryptanalysis
 - DES S-boxes resistant to differential cryptanalysis!
 - Both IBM and NSA knew of attacks, but they were classified

Block cipher attacks

Exhaustive Search for block cipher key

Goal: given a few input output pairs $(m_i, c_i = E(k, m_i))$ i=1,...,n find key k.

Attack: Brute force to find the key k.

DES challenge

$$msg = "The unknown messages is: XXXXXXXX..."$$
 $CT = c_1 c_2 c_3 c_4$

Goal: find $k \in \{0,1\}^{56}$ s.t. DES(k, m_i) = c_i for i=1,2,3

Proof: Reveal DES⁻¹(k, c_4)

1976	DES adopted as federal standard		
1997	Distributed search	3 months	
1998	EFF deep crack	3 days	\$250,000
1999	Distributed search	22 hours	
2006	COPACOBANA (120 FPGAs)	7 days	\$10,000

 \Rightarrow 56-bit ciphers should not be used (128-bit key \Rightarrow 2⁷² days)

Strengthening DES

Method 1: **Triple-DES**

Let $E: K \times M \longrightarrow M$ be a block cipher

Define **3E**: $K^3 \times M \longrightarrow M$ as: **3E**($(k_1, k_2, k_3), m$) = **E**($k_1, D(k_2, E(k_3, m))$)

3DES

- Key-size: $3 \times 56 = 168$ bits
- 3×slower than DES
- Simple attack in time: $\approx 2^{118}$

$$k_1 = k_2 = k_3 => DES$$

Why not 2DES?

• Define $2E((k_1,k_2), m) = E(k_1, E(k_2, m))$

key-len = 112 bits for 2DES

Naïve Attack: $M = (m_1, ..., m_{10}), C = (c_1, ..., c_{10}).$

For each $k_2 = \{0,1\}^{56}$:

For each $k_1 = \{0,1\}^{56}$:

if $E(k_2, E(k_1, m_i)) = c_i$ then (k_2, k_1)

• Define $2E((k_1,k_2), m) = E(k_1, E(k_2, m))$

Idea: key found when c' = c'': $E(k_i, m) = D(k_i, c)$

• Define $2E((k_1,k_2), m) = E(k_1, E(k_2, m))$

Attack: $M = (m_1, ..., m_{10})$, $C = (c_1, ..., c_{10})$.

step 1: build table.
 sort on 2nd column
 maps c' to k₂

$$M = (m_1, ..., m_{10})$$
, $C = (c_1, ..., c_{10})$

$k^0 = 0000$	E(k ⁰ , M)
$k^1 = 0001$	$E(k^1, M)$
$k^2 = 0010$	$E(k^2, M)$
÷	:
$k^{N} = 1111$	E(k ^N , M)

• step 1: build table.

• Step 2: for each $k \in \{0,1\}^{56}$: test if D(k, c) is in 2^{nd} column.

if so then
$$E(k^i,M) = D(k,C) \Rightarrow (k^i,k) = (k_2,k_1)$$

Time =
$$2^{56}\log(2^{56}) + 2^{56}\log(2^{56}) < 2^{63} << 2^{112}$$
[Build & Sort Table] [Search Entries]

Space $\approx 2^{56}$ [Table Size]

Same attack on 3DES: Time = 2^{118} , Space $\approx 2^{56}$

Block ciphers

AES – Advanced encryption standard

The AES process

- 1997: DES broken by exhaustive search
- 1997: NIST publishes request for proposal
- 1998: 15 submissions
- 1999: NIST chooses 5 finalists
- 2000: NIST chooses Rijndael as AES (developed by Daemen and Rijmen at K.U. Leuven, Belgium)

Key sizes: 128, 192, 256 bits

Block size: 128 bits

AES core idea: Subs-Perm network

DES is based on Feistel networks

AES is based on the idea of

substitution-permutation networks

That is, alternating steps of substitution and permutation operations

AES: Subs-Perm network

AES128 schematic

The round function

• **ByteSub:** a 1 byte S-box. 256 byte table (easily computable)

ShiftRows:

s _{0,0}	s _{0,1}	s _{0,2}	s _{0,3}
S _{1,0}	s _{1,1}	s _{1,2}	s _{1,3}
S _{2,0}	s _{2,1}	S _{2,2}	s _{2,3}
s _{3,0}	s _{3,1}	s _{3,2}	S _{3,3}

MixColumns()

s _{0,0}	s _{0,1}	s _{0,2}	s _{0,3}
s _{1,1}	s _{1,2}	S _{1,3}	S _{1,0}
S _{2,2}	S _{2,3}	S _{2,0}	s _{2,1}
S _{3,3}	s _{3,0}	s _{3,1}	s _{3,2}

MixColumns:

			_
s _{0,0}	$S_{0,c}$	s _{0,2}	S _{0,3}
S _{1,0}	$s_{1,c}$	S _{1,2}	S _{1,3}
S _{2,0}	$S_{2,c}$	s _{2,2}	S _{2,3}
S _{3,0}	$s_{3,c}$	s _{3,2}	S _{3,3}

Security

Many theoretical attacks have been proposed

 At present, there is no known practical attack that would allow someone without knowledge of the key to read data encrypted by AES when correctly implemented.

Modes of operation

Electronic Code Book (ECB) Mode

Problem:

$$m_1 = m_2 \longrightarrow c_1 = c_2$$

What can possibly go wrong?

Plaintext

Ciphertext

Images from Wikipedia

Semantic security under Chosen Plaintext Attack (CPA)

ECB is not CPA secure

Semantic security under CPA

 Modes that return the same ciphertext (e.g., ECB) for the same plaintext are not semantically secure under a chosen plaintext attack (CPA) (many-time-key)

Encryption modes must be randomized

Nonce-based encryption

Nonce n: a value that changes for each msg. E(k,m,n) / D(k,c,n)

(k,n) pair never used more than once

Nonce-based encryption

Method 1: Nonce is a counter

Used when encryptor keeps state from msg to msg

If decryptor has same state, nonce need not be transmitted (i.e., len(PT) = len(CT))

Method 2: Sender chooses a random nonce

No state required but nonce has to be transmitted with CT

Cipher block chaining mode (CBC)

Let(E,D) be a PRP. $E_{CBC}(k,m)$: chose <u>random</u> IV \in X and do:

Attack on CBC with Predictable IV

Suppose given $c \leftarrow E_{CBC}(k,m)$ Adv. can predict IV for next msg.

Cipher block chaining mode (CBC)

Example applications:

1. File system encryption:

use the same AES key to encrypt all files (e.g., loopaes)

2. IPsec:

use the same AES key to encrypt multiple packets

Problem:

If attacker can predict IV, CBC is not CPA-secure

Summary

Block ciphers

- Map fixed length input blocks to same length output blocks
- Canonical block ciphers: 3DES, AES
- PRPs are effectively block ciphers
- PRPs can be created from arbitrary functions through Feistel networks
 - 3DES based on Feistel networks
 - AES based on substitution-permutation networks

END

Linear and differential attacks

BS'89,M'93]

Given many inp/out pairs, can recover key in time less than 2^{56} .

<u>Linear cryptanalysis</u> (overview):

let c = DES(k, m)

Suppose for random k,m:

$$\Pr\left[\begin{array}{ccc} m[i_1] \oplus \cdots \oplus m[i_r] & \oplus & c[j_j] \oplus \cdots \oplus c[j_v] & = & k[l_1] \oplus \cdots \oplus k[l_u] \end{array}\right] = \frac{1}{2} + \epsilon$$

For some ε . For DES, this exists with $\varepsilon = 1/2^{21} \approx 0.0000000477$

Linear attacks

$$\Pr\left[\begin{array}{ccc} m[i_1] \oplus \cdots \oplus m[i_r] & \oplus & c[j_j] \oplus \cdots \oplus c[j_v] = \\ & & k[l_1] \oplus \cdots \oplus k[l_u] \end{array}\right] = \frac{1}{2} + \epsilon$$

Thm: given $1/\epsilon^2$ random (m, c=DES(k, m)) pairs then

$$k[l_1,...,l_u] = MAJ [m[i_1,...,i_r] \oplus c[j_j,...,j_v]]$$

with prob. $\geq 97.7\%$

 \Rightarrow with $1/\epsilon^2$ inp/out pairs can find $k[l_1,...,l_u]$ in time $\approx\!1/\epsilon^2$.

Linear attacks

For DES, $\varepsilon = 1/2^{21} \Rightarrow$ with 2^{42} inp/out pairs can find $k[l_1,...,l_u]$ in time 2^{42}

Roughly speaking: can find 14 key "bits" this way in time 2^{42}

Brute force remaining 56-14=42 bits in time 2^{42}

Total attack time $\approx 2^{43}$ ($<<2^{56}$) with 2^{42} random inp/out pairs

Lesson

A tiny bit of linearity in S_5 lead to a 2^{42} time attack.

⇒ don't design ciphers yourself !!

Quantum attacks

Generic search problem:

Let $f: X \longrightarrow \{0,1\}$ be a function.

Goal: find $x \in X$ s.t. f(x)=1.

Classical computer: best generic algorithm time = O(|X|)

Quantum computer [Grover '96]: time = $O(|X|^{1/2})$

Can quantum computers be built: unknown

Quantum exhaustive search

Given m, c=E(k,m) define
$$f(k) = \begin{cases} 1 & \text{if } E(k,m) = c \\ 0 & \text{otherwise} \end{cases}$$

Grover \Rightarrow quantum computer can find k in time $O(|K|^{1/2})$

DES: time $\approx 2^{28}$, AES-128: time $\approx 2^{64}$

quantum computer \Rightarrow 256-bits key ciphers (e.g. AES-256)