EE309 Advanced Programming Techniques for EE

Lecture 20: Block cipher INSU YUN (윤인수)

School of Electrical Engineering, KAIST
[Slides from 15-213: Introduction to Computer Systems at CMU]

What is a block cipher?

Block ciphers are the crypto work horse

Canonical examples:

1. 3DES: $n=64$ bits, $k=168$ bits
2. AES: $\mathrm{n}=128$ bits, $\mathrm{k}=128,192,256$ bits

Block ciphers built by iteration

$R(k, m)$ is called a round function Ex: 3DES (n=48), AES128 (n=10)

Performance: Stream vs. block ciphers

Crypto++ 5.6.0 [Wei Dai]

AMD Opteron, 2.2 GHz (Linux)

Cipher Block/key size Throughput [MB/s]

\sim RC4	126
¢ Salsa20/12	643
3 Sosemanuk	727

0	3DES	$64 / 168$	13
	AES128	$128 / 128$	109

Block ciphers

The Data Encryption Standard (DES)

History of DES

- 1970s: Horst Feistel designs Lucifer at IBM key $=128$ bits, block $=128$ bits
- 1973: The National Bureau of Standards (NBS) asks for block cipher proposals.

IBM submits variant of Lucifer.

- 1976: NBS adopts DES as federal standard key $=56$ bits, block $=64$ bits
- 1997: DES broken by exhaustive search
- 2000: NIST adopts Rijndael as AES to replace DES. AES currently widely deployed in banking, commerce and Web

DES: core idea - Feistel network

Given one-way functions $f_{1}, \ldots, f_{d}:\{0,1\}^{n} \rightarrow\{0,1\}^{n}$
Goal: build invertible function $F:\{0,1\}^{2 n} \rightarrow\{0,1\}^{2 n}$

In symbols: $\left\{\begin{array}{l}R_{i}=f_{i}\left(R_{i-1}\right) \oplus L_{i-1} \\ L_{i}=R_{i-1}\end{array}\right.$

Feistel network - inverse

Claim: $\quad f_{1}, \ldots, f_{d}:\{0,1\}^{n} \rightarrow\{0,1\}^{n}$

Feistel function F is invertible $F:\{0,1\}^{2 n} \rightarrow\{0,1\}^{2 n}$

Proof: construct inverse

$$
\left\{\begin{array}{l}
R_{i}= \\
L_{i}=
\end{array}\right.
$$

inverse

Decryption circuit

- Inversion is basically the same circuit, with f_{1}, \ldots, f_{d} applied in reverse order
- General method for building invertible functions (block ciphers) from arbitrary functions.
- Used in many block ciphers ... but not AES

Recall from Last Time:

Block Ciphers are (Modeled As) PRPs

Pseudo Random Permutation (PRP) defined over (K,X)

$$
E: K \times X \rightarrow X
$$

such that:

1. Exists "efficient" deterministic algorithm to evaluate $E(k, x)$
2. The function $E(k, \cdot)$ is one-to-one
3. Exists "efficient" inversion algorithm $D(k, y)$

Luby-Rackoff Theorem (1985)

$f: K \times\{0,1\}^{n} \rightarrow\{0,1\}^{n}$ is a secure PRF
$\Rightarrow 3$-round Feistel $F: K^{3} \times\{0,1\}^{2 n} \rightarrow\{0,1\}^{2 n}$
is a secure PRP

DES: 16 round Feistel network

$$
f_{1}, \ldots, f_{16}:\{0,1\}^{32} \rightarrow\{0,1\}^{32} \text { and } f_{i}(x)=\mathbf{F}\left(k_{i}, x\right)
$$

16 round Feistel network
To invert, use keys in reverse order

The function $F\left(\mathrm{k}_{\mathrm{i}}, \mathrm{x}\right)$

S-box: function $\{0,1\}^{6} \rightarrow\{0,1\}^{4}$, implemented as lookup table.

The S-boxes

$$
\begin{aligned}
S_{i}:\{0,1\}^{6} & \rightarrow\{0,1\}^{4} \\
\text { e..g., } 011011 & \rightarrow 1001
\end{aligned}
$$

S_{5}		Middle 4 bits of input															
		0000	0001	0010	0011	0100	0101	0110	0111	1000	1001	1010	1011	1100	1101	1110	1111
Outer bits	00	0010	1100	0100	0001	0111	1010	1011	0110	1000	0101	0011	1111	1101	0000	1110	1001
	01	1110	1011	0010	1100	0100	0111	1101	0001	0101	0000	1111	1010	0011	1001	1000	0110
	10	0100	0010	0001	1011	1010	1101	0111	1000	1111	1001	1100	0101	0110	0011	0000	1110
	11	1011	1000	1100	0111	0001	1110	0010	1101	0110	1111	0000	1001	1010	0100	0101	0011

The S-boxes

- Alan Konheim (one of the designers of DES) commented, "We sent the S-boxes off to Washington. They came back and were all different."
- 1990: (Re-)Discovery of differential cryptanalysis
- DES S-boxes resistant to differential cryptanalysis!
- Both IBM and NSA knew of attacks, but they were classified

Block cipher attacks

Exhaustive Search for block cipher key

Goal: given a few input output pairs

$$
\left(m_{i}, c_{i}=E\left(k, m_{i}\right)\right) \quad i=1, . ., n \text { find key } k .
$$

Attack: Brute force to find the key k.

DES challenge

$$
\begin{aligned}
& \text { msg }=\text { "The unkn } \\
& \mathrm{CT}= \\
& \mathbf{c}_{1}
\end{aligned}
$$

Goal: find $\mathrm{k} \in\{0,1\}^{56}$ s.t. $\operatorname{DES}\left(\mathrm{k}, \mathrm{m}_{\mathrm{i}}\right)=\mathrm{c}_{\mathrm{i}}$ for $\mathrm{i}=1,2,3$ Proof: Reveal DES $^{-1}\left(\mathrm{k}, \mathrm{c}_{4}\right)$

1976 DES adopted as federal standard 1997 Distributed search

3 months
1998 EFF deep crack
1999 Distributed search
3 days $\quad \$ 250,000$

2006 COPACOBANA (120 FPGAs)
22 hours
7 days \$10,000
$\Rightarrow \quad 56$-bit ciphers should not be used $\quad\left(128\right.$-bit key $\Rightarrow 2^{72}$ days)

Strengthening DES

Method 1: Triple-DES
Let $\mathrm{E}: \mathrm{K} \times \mathrm{M} \rightarrow \mathrm{M}$ be a block cipher
Define $\quad \mathbf{3 E}: \mathrm{K}^{3} \times \mathrm{M} \rightarrow \mathrm{M}$ as: $\mathbf{3 E}\left(\left(k_{1}, k_{2}, k_{3}\right), m\right)=E\left(k_{1}, \mathbf{D}\left(k_{2}, E\left(k_{3}, m\right)\right)\right)$

3DES

- Key-size: $3 \times 56=168$ bits

$$
\mathrm{k}_{1}=\mathrm{k}_{2}=\mathrm{k}_{3}=>\mathrm{DES}
$$

- $3 \times$ slower than DES
- Simple attack in time: $\approx 2^{118}$

Why not 2DES?

- Define $\quad 2 \mathrm{E}\left(\left(\mathrm{k}_{1}, \mathrm{k}_{2}\right), \mathrm{m}\right)=\mathrm{E}\left(\mathrm{k}_{1}, \mathrm{E}\left(\mathrm{k}_{2}, \mathrm{~m}\right)\right)$
key-len = 112 bits for 2DES

Naïve Attack: $\mathrm{M}=\left(\mathrm{m}_{1}, \ldots, \mathrm{~m}_{10}\right), \mathrm{C}=\left(\mathrm{c}_{1}, \ldots, \mathrm{c}_{10}\right)$.
For each $\mathrm{k}_{2} \in\{0,1\}^{56}$:
For each $\mathrm{k}_{1} \in\{0,1\}^{56}$:
if $E\left(k_{2}, E\left(k_{1}, m_{i}\right)\right)=c_{i}$ then $\left(k_{2}, k_{1}\right)$

Meet in the middle attack

- Define $2 E\left(\left(k_{1}, k_{2}\right), m\right)=E\left(k_{1}, E\left(k_{2}, m\right)\right)$

Idea: key found when $\mathrm{c}^{\prime}=\mathrm{c}^{\prime \prime}: \mathrm{E}\left(\mathrm{k}_{\mathrm{i}}, \mathrm{m}\right)=\mathrm{D}\left(\mathrm{k}_{\mathrm{j}}, \mathrm{c}\right)$

Meet in the middle attack

- Define $\quad 2 E\left(\left(k_{1}, k_{2}\right), m\right)=E\left(k_{1}, E\left(k_{2}, m\right)\right)$

Attack: $\quad \mathrm{M}=\left(\mathrm{m}_{1}, \ldots, \mathrm{~m}_{10}\right), \mathrm{C}=\left(\mathrm{c}_{1}, \ldots, \mathrm{c}_{10}\right)$.

- step 1: build table. sort on $2^{\text {nd }}$ column maps c' to k_{2}
$\left.\begin{array}{|c|c|}\hline & \\ \mathrm{k}^{0}=00 \ldots 00 & \mathrm{E}\left(\mathrm{k}^{0}, \mathrm{M}\right) \\ \mathrm{k}^{1}=00 \ldots 01 & \mathrm{E}\left(\mathrm{k}^{1}, \mathrm{M}\right) \\ \mathrm{k}^{2}=00 \ldots 10 & \mathrm{E}\left(\mathrm{k}^{2}, \mathrm{M}\right) \\ \vdots & \vdots \\ \mathrm{k}^{\mathrm{N}}=11 \ldots 11 & \mathrm{E}\left(\mathrm{k}^{\mathrm{N}}, \mathrm{M}\right)\end{array}\right]$ entries

Meet in the middle attack

$M=\left(m_{1}, \ldots, m_{10}\right), \quad C=\left(c_{1}, \ldots, c_{10}\right)$

$\mathrm{k}^{0}=00 \ldots 00$	$\mathrm{E}\left(\mathrm{k}^{0}, \mathrm{M}\right)$
$\mathrm{k}^{1}=00 \ldots .01$	$\mathrm{E}\left(\mathrm{k}^{1}, \mathrm{M}\right)$
$\mathrm{k}^{2}=00 \ldots 10$	$\mathrm{E}\left(\mathrm{k}^{2}, \mathrm{M}\right)$
\vdots	\vdots
$\mathrm{k}^{\mathrm{N}}=11 \ldots 11$	$\mathrm{E}\left(\mathrm{k}^{\mathrm{N}}, \mathrm{M}\right)$

- Step 2: for each $\mathrm{k} \in\{0,1\}^{56}$: test if $D(k, c)$ is in $2^{\text {nd }}$ column. if so then $E\left(k^{i}, M\right)=D(k, C) \Rightarrow\left(k^{i}, k\right)=\left(k_{2}, k_{1}\right)$

Meet in the middle attack

> Time $=2^{56} \log \left(2^{56}\right)+2^{56} \log \left(2^{56}\right)<2^{63} \ll 2^{112}$
> $[$ Search Entries $]$

Space $\approx 2^{56}$ [Table Size]

Same attack on 3DES: Time $=2^{118}$, Space $\approx 2^{56}$

Block ciphers

AES - Advanced encryption standard

The AES process

- 1997: DES broken by exhaustive search
- 1997: NIST publishes request for proposal
- 1998: 15 submissions
- 1999: NIST chooses 5 finalists
- 2000: NIST chooses Rijndael as AES
(developed by Daemen and Rijmen at K.U. Leuven, Belgium)

Key sizes: 128, 192, 256 bits
Block size: 128 bits

AES core idea: Subs-Perm network

DES is based on Feistel networks
AES is based on the idea of

substitution-permutation networks

That is, alternating steps of substitution and permutation operations

AES: Subs-Perm network

AES128 schematic

10 rounds

The round function

- ByteSub: a 1 byte S-box. 256 byte table (easily computable)
- ShiftRows:

$s_{0,0}$	$s_{0,1}$	$s_{0,2}$	$s_{0,3}$
$s_{1,0}$	$s_{1,1}$	$s_{1,2}$	$s_{1,3}$
$s_{2,0}$	$s_{2,1}$	$s_{2,2}$	$s_{2,3}$
$s_{3,0}$	$s_{3,1}$	$s_{3,2}$	$s_{3,3}$

$s_{0,0}$	$s_{0,1}$	$s_{0,2}$	$s_{0,3}$
$s_{1,1}$	$s_{1,2}$	$s_{1,3}$	$s_{1,0}$
$s_{2,2}$	$s_{2,3}$	$s_{2,0}$	$s_{2,1}$
$s_{3,3}$	$s_{3,0}$	$s_{3,1}$	$s_{3,2}$

- MixColumns:

	$\mathrm{S}_{0, \mathrm{c}}$			MixColumns()	$S_{0, c}^{\prime}$		
$\mathrm{S}_{0,0}$		$\mathrm{S}_{0,2}$	$\mathrm{S}_{0,3}$			$\mathrm{s}_{0,2}^{\prime}$	$\mathrm{s}_{0,3}^{\prime}$
$\mathrm{S}_{1,0}$	$\mathrm{S}_{1, \mathrm{c}}$	$\mathrm{S}_{1,2}$	$\mathrm{S}_{1,3}$		$\mathrm{s}_{1,0}^{\prime} \mathrm{S}_{1, \mathrm{c}}^{\prime}$	$\mathrm{s}_{1,2}$	$\mathrm{s}_{1,3}$
$\mathrm{S}_{2,0}$	$\mathrm{S}_{2, \mathrm{c}}$	$\mathrm{S}_{2,2}$	$\mathrm{S}_{2,3}$		$\mathrm{s}_{2,0}^{\prime} \mathrm{S}^{\prime}{ }_{2, \mathrm{c}}$	$\mathrm{s}_{2,2}$	$\mathrm{s}_{2,3}$
$\mathrm{S}_{3,0}$	$\mathrm{S}_{3, \mathrm{c}}$	$\mathrm{S}_{3,2}$	$\mathrm{s}_{3,3}$		$\mathrm{s}_{3,0}^{\prime} \mathrm{s}_{3, \mathrm{c}}^{\prime}$	$\mathrm{s}_{3,2}$	$\mathrm{s}_{3,3}$

Security

- Many theoretical attacks have been proposed
- At present, there is no known practical attack that would allow someone without knowledge of the key to read data encrypted by AES when correctly implemented.

Modes of operation

Electronic Code Book (ECB) Mode

Problem:

$$
\mathrm{m}_{1}=\mathrm{m}_{2} \rightarrow \mathrm{c}_{1}=\mathrm{c}_{2}
$$

What can possibly go wrong?

Ciphertext

Images from Wikipedia

Semantic security under

Chosen Plaintext Attack (CPA)

ECB is not CPA secure

Semantic security under CPA

- Modes that return the same ciphertext (e.g., ECB) for the same plaintext are not semantically secure under a chosen plaintext attack (CPA) (many-time-key)

Encryption modes must be randomized

Nonce-based encryption

Nonce n : a value that changes for each msg. E(k,m,n) / D(k,c,n)

(k, n) pair never used more than once

Nonce-based encryption

Method 1: Nonce is a counter
Used when encryptor keeps state from msg to msg
If decryptor has same state, nonce need not be transmitted (i.e., len(PT) $=\operatorname{len}(\mathrm{CT})$)
Method 2: Sender chooses a random nonce
No state required but nonce has to be transmitted with CT

Cipher block chaining mode (CBC)

Let(E, D) be a PRP. $\mathrm{E}_{\mathrm{CBC}}(\mathrm{k}, \mathrm{m})$: chose random $\mathrm{IV} \in \mathrm{X}$ and do:

Attack on CBC with Predictable IV

Suppose given $\mathrm{c} \leftarrow \mathrm{E}_{\mathrm{CBC}}(\mathrm{k}, \mathrm{m})$ Adv. can predict IV for next msg.

Bug in SSL/TLS 1.1: IV for record \#i is last CT block of record \#(i-1)

Cipher block chaining mode (CBC)

Example applications:

1. File system encryption:
use the same AES key to encrypt all files (e.g., loopaes)
2. IPsec:
use the same AES key to encrypt multiple packets
Problem:
If attacker can predict IV, CBC is not CPA-secure

Summary

Block ciphers

- Map fixed length input blocks to same length output blocks
- Canonical block ciphers: 3DES, AES
- PRPs are effectively block ciphers
- PRPs can be created from arbitrary functions through Feistel networks
- 3DES based on Feistel networks
- AES based on substitution-permutation networks

END

Linear and differential attacks

Given many inp/out pairs, can recover key in time less than 2^{56}.

Linear cryptanalysis (overview) : let $\mathrm{c}=\mathrm{DES}(\mathrm{k}, \mathrm{m})$
Suppose for random k, m :
$\operatorname{Pr}\left[m\left[i_{1}\right] \oplus \cdots \oplus m\left[i_{r}\right] \oplus c\left[j_{j}\right] \oplus \cdots \oplus c\left[j_{v}\right]=k\left[l_{1}\right] \oplus \cdots \oplus k\left[l_{u}\right]\right]=1 / 2+\varepsilon$
For some ε. For DES, this exists with

$$
\varepsilon=1 / 2^{21} \approx 0.0000000477
$$

Linear attacks

$$
\begin{gathered}
\operatorname{Pr}\left[\mathrm{m}\left[\mathrm{i}_{1}\right] \oplus \cdots \oplus \mathrm{m}\left[\mathrm{i}_{\mathrm{i}}\right] \oplus \mathrm{c}\left[\mathrm{j}_{\mathrm{j}}\right] \oplus \cdots \oplus \mathrm{c}\left[\mathrm{j}_{\mathrm{v}}\right]=\right. \\
\left.\mathrm{k}\left[\mathrm{l}_{1}\right] \oplus \cdots \oplus \mathrm{k}\left[\mathrm{l}_{\mathrm{u}}\right]\right]={ }_{=1 / 2+\varepsilon}^{1 / 2}
\end{gathered}
$$

Thm: given $1 / \varepsilon^{2}$ random ($m, c=D E S(k, m)$) pairs then

$$
\mathrm{k}\left[\mathrm{l}_{1}, \ldots, \mathrm{l}_{\mathrm{u}}\right]=\operatorname{MAJ}\left[\mathrm{m}\left[\mathrm{i}_{1}, \ldots, \mathrm{i}_{\mathrm{r}}\right] \oplus \mathrm{c}\left[\mathrm{j}_{\mathrm{j}}, \ldots, \mathrm{j}_{\mathrm{v}}\right]\right]
$$

with prob. $\geq 97.7 \%$
\Rightarrow with $1 / \varepsilon^{2} \operatorname{inp} /$ out pairs can find $k\left[l_{1}, \ldots, l_{u}\right]$ in time $\approx 1 / \varepsilon^{2}$.

Linear attacks

For DES, $\varepsilon=1 / 2^{21} \Rightarrow$
with 2^{42} inp/out pairs can find $\mathrm{k}\left[\mathrm{l}_{1}, \ldots, \mathrm{l}_{\mathrm{u}}\right]$ in time 2^{42}

Roughly speaking: can find 14 key "bits" this way in time 2^{42}

Brute force remaining $56-14=42$ bits in time 2^{42}

Total attack time $\approx 2^{43}\left(\ll 2^{56}\right)$ with 2^{42} random inp/out pairs

Lesson

A tiny bit of linearity in S_{5} lead to a 2^{42} time attack.

\Rightarrow don’t design ciphers yourself !!

Quantum attacks

Generic search problem:
Let $\mathrm{f}: \mathrm{X} \longrightarrow\{0,1\}$ be a function.
Goal: find $x \in X$ s.t. $f(x)=1$.
Classical computer: best generic algorithm time
$=O(|X|)$

Quantum computer [Grover'96]: \quad time $=O\left(|X|^{1 / 2}\right)$

Can quantum computers be built: unknown

Quantum exhaustive search

Given $m, c=E(k, m)$ define

$$
f(k)= \begin{cases}1 & \text { if } E(k, m)=c \\ 0 & \text { otherwise }\end{cases}
$$

Grover \Rightarrow quantum computer can find k in time $O\left(|K|^{1 / 2}\right)$

DES: time $\approx 2^{28}$, AES-128: time $\approx 2^{64}$
quantum computer \Rightarrow 256-bits key ciphers (e.g. AES-256)

