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Message Integrity
Goal: integrity (not secrecy)

Examples:
– Protecting binaries on disk.   

– Protecting banner ads on web pages

Security Principles: 
– Integrity means no one can forge a signature
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CRC (Cyclic Redundancy Check)

Is this Secure?
• No! Attacker can easily modify message m and 

re-compute CRC.
• CRC designed to detect random errors, not 

malicious attacks.

Generate tag:
tag ← CRC(m)

Verify tag:
CRC(m, tag)  ?= ‘yes’

5

Alice BobS V
message tag



Message Authentication Codes (MAC)

Defn: A Message Authentication Code (MAC) MAC = 
(S,V)  defined over  (K,M,T) is a pair of algorithms:

– S(k,m) outputs t in T
– V(k,m,t) outputs `yes’ or `no’

– V(k, m, S(k,m))  = ‘yes’ (consistency req.)
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Secure MAC Game

Security goal: A cannot produce a valid tag on a 
message

– Even if the message is gibberish
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Challenger
1. k = KeyGen(l)

3. Compute i in 0...q:
ti = S(mi, k)

5. b = V(m,t,k) 

Adversary A

2. Picks  m1, ..., mq

4. picks m not in m1,...,mq
Generates t

m1,...,mq

t1,...,tq

m,t

b = {yes,no} existential forgery 
if b=“yes”



Secure MAC Game

Def: I=(S,V) is a secure MAC if for all “efficient” A:
AdvMAC[A,I] = Pr[Chal. outputs 1]  < ε
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1. k = KeyGen(l)

3. Compute i in 0...q:
ti = S(mi, k)

5. b = V(m,t,k) 

Adversary A

2. Picks  m1, ..., mq

4. picks m not in m1,...,mq
Generates t

m1,...,mq

t1,...,tq

m,t

b = {yes,no}



Let  I = (S,V) be a MAC.

Suppose an attacker is able to find  m0 ≠ m1 such that

S(k, m0) = S(k, m1)     for  ½ of the keys k in K

Can this MAC be secure?

1. Yes, the attacker cannot generate a valid tag for m0 or m1

2. No, this MAC can be broken using a chosen msg attack
3. It depends on the details of the MAC

1. A sends m0, receives (m0, t0)
2. A wins with (m1, t0)
3. Adv[A,I] = ½ since prob. of key is ½.



MACs from PRFs
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Secure PRF implies secure MAC
For a PRF  F: K × X  ⟶ Y, define a MAC IF = (S,V)    as:

– S(k,m) = F(k,m)
– V(k,m,t): if  t = F(k,m), output ‘yes’ else ‘no’

tag ← F(k,m) accept msg if
tag = F(k,m)
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Security
Thm: If  F: K×X⟶Y is a secure PRF and 1/|Y| is negligible 
(i.e., |Y| is large), then IF is a secure MAC.

In particular,  for every eff. MAC adversary A attacking IF, 
there exists an eff. PRF adversary B attacking F s.t.:

AdvMAC[A, IF]  <=  AdvPRF[B, F]   +  1/|Y|
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Proof Sketch

A wins iff t=f(k,m) and m not in m1,...,mq

PR[A wins] = Pr[A guesses value of rand. function on new pt]

= 1/|Y| same must hold for F(k, x)
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b

Let f be a truly random function

m1,...,mq

Adversary A

1. Picks  m1, ..., mq

4. picks m not in 
m1,...,mq. Generates t

t1,...,tx

m,t

Challenger

2. f from FUNS[X,Y]
3. Calculates
ti = f(k, mi)



Question
Suppose  F: K × X  ⟶ Y   is a secure PRF with
Y = {0,1}10

Is the derived MAC IF a practically secure MAC 
system?

1. Yes, the MAC is secure because the PRF is secure 

2. No tags are too short:  guessing tags isn’t hard

3. It depends on the function   F

Adv[A,F] = 1/1024 
(we need |Y| to be large)
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Secure PRF implies secure MAC

S(k,m) = F(k,m)
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Assuming output 
domain Y is large

So AES is already a secure MAC....
... but AES is only defined on 16-byte messages



Given: a PRF for shorter messages (e.g., 16 
bytes)
Goal: build a MAC for longer messages 
(e.g., gigabytes)

Construction examples:
– CBC-MAC: Turn small PRF into big PRF
– HMAC: Build from collision resistance
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HMAC   (Hash-MAC)

Most widely used MAC on the Internet.

…  but,  we first we need to discuss hash 
function.
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Hash Functions

33



Collision Resistance
Let  H: X → Y  be a hash function       (  |X| >> |Y|  )

A collision for H is a pair  m0 , m1 ∈ M  such that:
H(m0)  =  H(m1)    and    m0 ≠ m1

A function H is collision resistant if for all 
(explicit) “eff” algs. A:

AdvCR[A,H]  =  Pr[ A outputs collision for H]
is “negligible”.

Example:   SHA-256  (outputs 256 bits)
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General Idea
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m

hk1
PRF

k2

tag

Hash then PRF construction



MACs from Collision Resistance
Let I = (S,V)  be a MAC for short messages over (K,M,T) 
(e.g. AES)

Let  H: X → Y and S: K x Y → T                    (|X| >> |Y|)

Def:    Ibig = (Sbig , Vbig )    over   (K, Xbig, Y)   as:

Sbig(k,m) = S(k,H(m))    ;     Vbig(k,m,t) = V(k,H(m),t)

Thm: If I is a secure MAC and H is collision resistant, then Ibig

is a secure MAC.

Example: S(k,m) = AES2-block-cbc(k,  SHA-256(m)) is secure.
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MACs from Collision Resistance

Collision resistance is necessary for security:

Suppose: adversary can find  m0 ≠ m1 s.t. H(m0) = H(m1).

Then: Sbig is insecure under a 1-chosen msg attack

step 1:  adversary asks for  t ⟵S(k, m0)
step 2:   output   (m1 , t)   as forgery

Sbig(k, m) = S(k, H(m))    ;     Vbig(k, m, t) = V(k, H(m), t)
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Collisions and the Birthday Paradox
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Birthday Paradox

Put n people in  a room. What is the 
probability that 2 of them have the same 
birthday?
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P1

P2

P3

P4

Pn

PR[Pi = Pj] > .5 with 23 people.
(Think: n2 different pairs) 



Birthday Paradox Rule of Thumb

Given N possibilities, and random samples x1, 
..., xj, PR[xi = xj] ≈ 50% when j = N1/2
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Generic attack on hash functions
Let  H: M → {0,1}n be a hash function    ( |M| >> 2n  )

Generic alg. to find a collision in time   O(2n/2)   hashes

Algorithm:
1. Choose 2n/2 random messages in M:     

m1, …, m2n/2      (distinct w.h.p )
2. For i = 1, …,  2n/2  compute    ti = H(mi)    ∈{0,1}n

3. Look for a collision  (ti = tj).    If not found, got back 
to step 1.

How well will this work?
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The birthday paradox

Let   r1, …, ri∈ {1,…,n}   be indep. identically 
distributed integers. 

Thm: 
when  i= 1.2 × n1/2 then  Pr[ ∃i≠j:   ri = rj ] ≥  ½ 
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If H: M-> {0,1}n, then 
Pr[collision] ~ ½ 
with n1/2 hashes 



B=106

# samples  n

50% prob of 
collision with 
~1200 hashes
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AMD Opteron,   2.2 GHz     ( Linux)

digest generic

function size (bits) Speed  (MB/sec) attack time

SHA-1 160 153 280

SHA-256 256 111 2128

SHA-512 512 99 2256

Whirlpool 512 57 2256

Sample Speeds Crypto++  5.6.0  [ Wei Dai ]

N
IST standards

* best known collision finder for SHA-1 requires 251 hash evaluations  
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Merkle-Damgard
How to construct collision resistant hash functions
http://www.merkle.com/

52



The Merkle-Damgard iterated construction

Given   h: T × X ⟶ T        (compression function)

we obtain H: X≤L⟶ T .   Hi - chaining variables

PB:    padding block

m[0] m[1] m[2] m[3]  ll PB

IV
(fixed) H(m)

H0 H1 H2 H3 H4

1000…0  ll msg len

64 bits

If no space for PB 
add another block

h h h h

53



Security of Merkle-Damgard
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Thm: if h is collision resistant then so is H.
Proof Idea:
via contrapositive. Collisions on H⇒ collision on h

Suppose  H(M) = H(M’).    We build collision for  h.



Compr. func. from a block cipher
E: K× {0,1}n ⟶ {0,1}n a block cipher.

The Davies-Meyer compression function
h(H, m) = E(m, H)⨁H

Thm:   Suppose E is an ideal cipher 
(collection of |K| random perms.).
Finding a collision h(H,m)=h(H’,m’) takes O(2n/2) evaluations 
of (E,D).

E

mi

Hi
⨁

Best possible !!
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Hash MAC (HMAC)
Most widely used approach on the internet, 
e.g., SSL, SSH, TLS, etc.

56



Recall Merkel-Damgard

Thm: 
h collision resistant implies H collision resistant

m[0] m[1] m[2] m[3]  ll PB

IV
(fixed) H(m)

H0 H1 H2 H3 H4

h h h h

Can we build a MAC out of H?
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Attempt 1
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Let H: X≤L ⟶ T be a Merkle-Damgard hash, and:
S(k,m) = H(k||m)
is this secure? no!  why?

m[0] m[1] m[2] m[3]  ll PB

IV
(fixed) H(m)

H0 H1 H2 H3 H4

h h h h

Existential forgery: 
H(k||m) = H(k||m||PB||w) 

(just one more h)



Build MAC out of a hash

• Example: H = SHA-256

HMAC:   S( k, m ) =  H(  k⊕opad ,  H( k⊕ipad || m )  )

Hash Mac (HMAC)
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HMAC

PB: Padding Block

m[0] m[1] m[2] || PB

h0 h1 h2 h3 h4
h h

h

h

IV

k⨁ipad

IV
(fixed)

h

h
k⨁opad

tag
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Further reading
• J. Black, P. Rogaway: CBC MACs for Arbitrary-Length Messages: The 

Three-Key Constructions. J. Cryptology 18(2): 111-131 (2005)

• K. Pietrzak: A Tight Bound for EMAC. ICALP (2) 2006: 168-179

• J. Black, P. Rogaway: A Block-Cipher Mode of Operation for 
Parallelizable Message Authentication. EUROCRYPT 2002: 384-397

• M. Bellare: New Proofs for NMAC and HMAC: Security Without 
Collision-Resistance. CRYPTO 2006: 602-619

• Y. Dodis, K. Pietrzak, P. Puniya: A New Mode of Operation for Block 
Ciphers and Length-Preserving MACs. EUROCRYPT 2008: 198-219
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Questions?
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