EE309 Advanced Programming Techniques for EE

Lecture 21: Message Authentication Codes (MACs) and Hashes

INSU YUN (윤인수)

School of Electrical Engineering, KAIST

[Slides from Introduction to Computer Security (18-487) at CMU]

Message Integrity

Goal: *integrity* (not secrecy)

Examples:

- Protecting binaries on disk.
- Protecting banner ads on web pages

Security Principles:

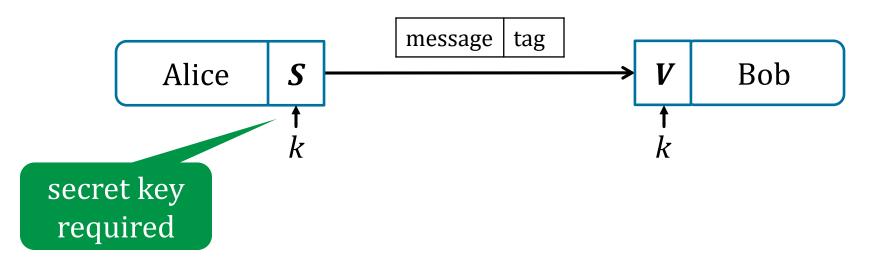
Integrity means no one can forge a signature

CRC (Cyclic Redundancy Check)

Is this Secure?

- No! Attacker can easily modify message m and re-compute CRC.
- CRC designed to detect <u>random errors</u>, not malicious attacks.

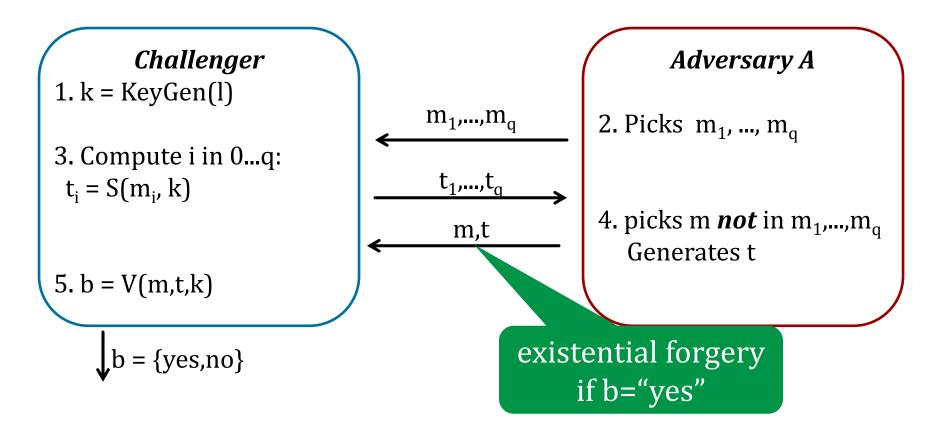
Message Authentication Codes (MAC)



Defn: A <u>Message Authentication Code (MAC</u>) MAC = (S,V) defined over (K,M,T) is a pair of algorithms:

- S(k,m) outputs t in T
- V(k,m,t) outputs `yes' or `no'
- V(k, m, S(k,m)) = 'yes' (consistency req.)

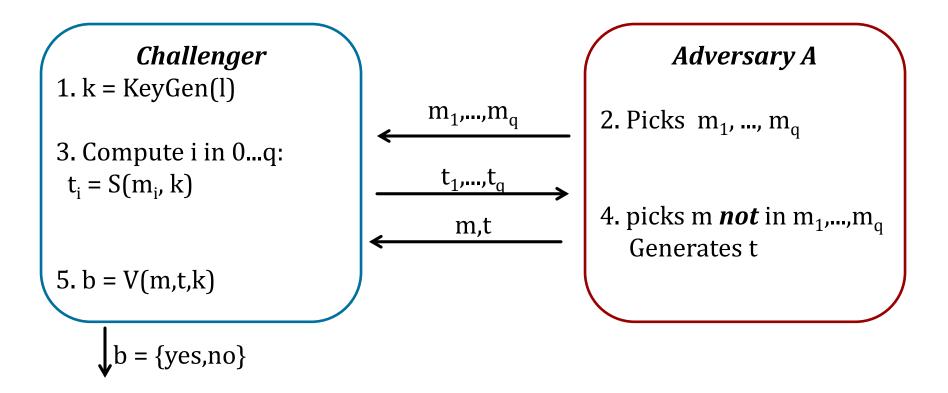
Secure MAC Game



Security goal: **A** cannot produce a valid tag on a message

– Even if the message is gibberish

Secure MAC Game



Def: I=(S,V) is a <u>secure MAC</u> if for all "efficient" A: Adv_{MAC}[A,I] = Pr[Chal. outputs 1] < ϵ Let I = (S,V) be a MAC.

Suppose an attacker is able to find $m_0 \neq m_1$ such that $S(k, m_0) = S(k, m_1)$ for $\frac{1}{2}$ of the keys k in K

Can this MAC be secure?

- 1. Yes, the attacker cannot generate a valid tag for m_0 or m_1
- No, this MAC can be broken using a chosen msg attack
 - 3. It depends on the details of the MAC

 - A sends m₀, receives (m₀, t₀)
 A wins with (m₁, t₀)
 Adv[A,I] = ½ since prob. of key is ½.

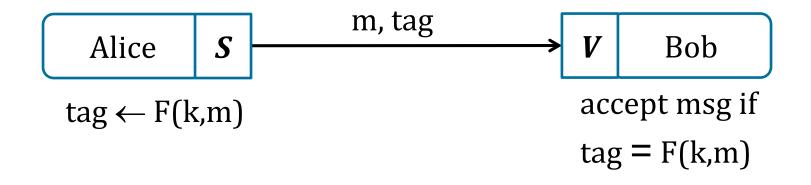
MACs from PRFs

Secure PRF implies secure MAC

For a PRF F: $K \times X \longrightarrow Y$, define a MAC $I_F = (S,V)$ as:

$$-S(k,m) = F(k,m)$$

-V(k,m,t): if t = F(k,m), output 'yes' else 'no'

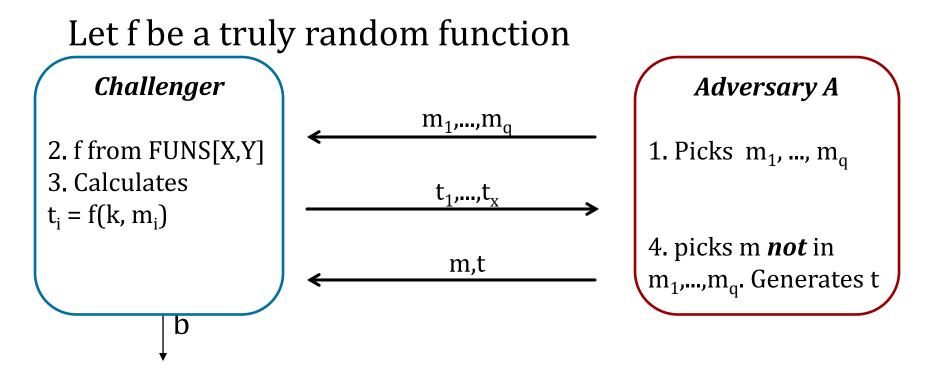


Security

<u>Thm</u>: If F: $K \times X \longrightarrow Y$ is a secure PRF and 1/|Y| is negligible (i.e., |Y| is large), then I_F is a secure MAC.

In particular, for every eff. MAC adversary **A** attacking $I_{F'}$ there exists an eff. PRF adversary **B** attacking F s.t.: $Adv_{MAC}[\mathbf{A}, I_F] \leq Adv_{PRF}[\mathbf{B}, F] + 1/|Y|$

Proof Sketch



A wins iff t=f(k,m) and m not in $m_1,...,m_q$ PR[A wins] = Pr[A guesses value of rand. function on new pt] = 1/|Y| same must hold for F(k, x)

Question

Suppose F: $K \times X \longrightarrow Y$ is a secure PRF with $Y = \{0,1\}^{10}$

Is the derived MAC I_F a <u>practically</u> secure MAC system?

1. Yes, the MAC is secure because the PRF is secure

2. No tags are too short: guessing tags isn't hard

3. It depends on the function F

Adv[A,F] = 1/1024(we need |Y| to be large)

Secure PRF *implies* secure MAC

S(k,m) = F(k,m) Assuming output domain Y is large

So AES is already a secure MAC.... ... but AES is only defined on 16-byte messages

Building Secure MACs

<u>Given:</u> a PRF for shorter messages (e.g., 16 bytes)

<u>Goal:</u> build a MAC for longer messages (e.g., gigabytes)

Construction examples:

- CBC-MAC: Turn small PRF into big PRF
- HMAC: Build from collision resistance

HMAC (Hash-MAC)

Most widely used MAC on the Internet.

... but, we first we need to discuss hash function.

Hash Functions

Collision Resistance

Let $H: X \rightarrow Y$ be a hash function (|X| >> |Y|)

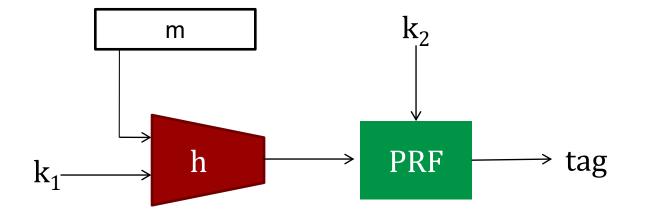
A <u>collision</u> for H is a pair m_0 , $m_1 \in M$ such that: H(m₀) = H(m₁) and $m_0 \neq m_1$

A function H is **collision resistant** if for all (explicit) "eff" algs. A:

Adv_{CR}[A,H] = Pr[A outputs collision for H] is "negligible".

Example: SHA-256 (outputs 256 bits)

General Idea



Hash then PRF construction

MACs from Collision Resistance

Let I = (S,V) be a MAC for short messages over (K,M,T) (e.g. AES)

Let $H: X \to Y$ and $S: K \times Y \to T$ (|X| >> |Y|)

Def: $I^{\text{big}} = (S^{\text{big}}, V^{\text{big}})$ over (K, X^{big}, Y) as:

 $S^{\text{big}}(k,m) = S(k,H(m))$; $V^{\text{big}}(k,m,t) = V(k,H(m),t)$

<u>**Thm</u>**: If I is a secure MAC and H is collision resistant, then I^{big} is a secure MAC.</u>

Example: $S(k,m) = AES_{2-block-cbc}(k, SHA-256(m))$ is secure.

MACs from Collision Resistance

 $S^{big}(k, m) = S(k, H(m))$; $V^{big}(k, m, t) = V(k, H(m), t)$

Collision resistance is necessary for security:

Suppose: adversary can find $m_0 \neq m_1$ s.t. $H(m_0) = H(m_1)$.

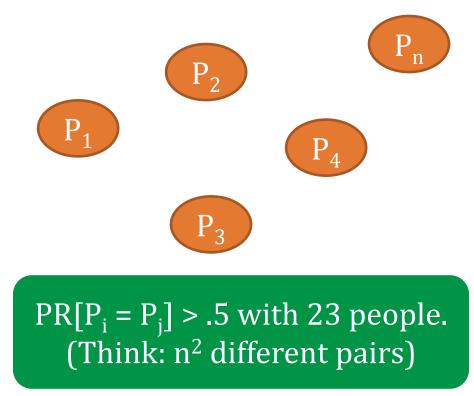
Then: **S**^{big} is insecure under a 1-chosen msg attack

step 1: adversary asks for $t \leftarrow S(k, m_0)$ step 2: output (m_1, t) as forgery

Collisions and the Birthday Paradox

Birthday Paradox

Put n people in a room. What is the probability that 2 of them have the same birthday?



Birthday Paradox Rule of Thumb

Given N possibilities, and random samples x_1 , ..., x_j , PR[$x_i = x_j$] $\approx 50\%$ when j = N^{1/2}

Generic attack on hash functions

Let $H: M \rightarrow \{0,1\}^n$ be a hash function ($|M| >> 2^n$)

Generic alg. to find a collision in time $O(2^{n/2})$ hashes

Algorithm:

- 1. Choose $2^{n/2}$ random messages in M: m₁, ..., m_{2^{n/2}} (distinct w.h.p)
- 2. For i = 1, ..., $2^{n/2}$ compute $t_i = H(m_i) \in \{0,1\}^n$
- 3. Look for a collision $(t_i = t_j)$. If not found, got back to step 1.

How well will this work?

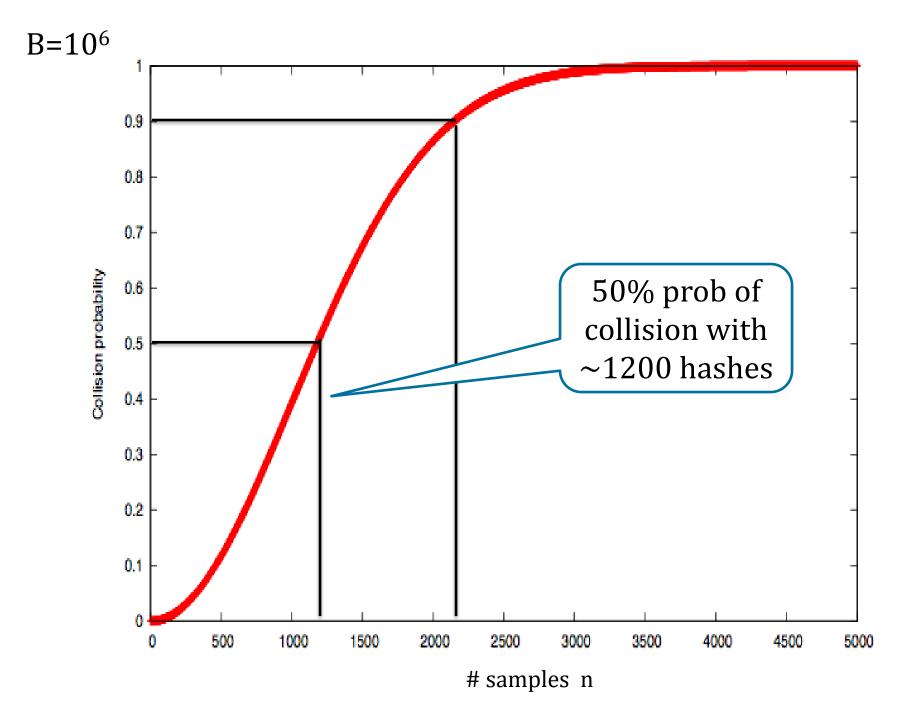
The birthday paradox

Let $r_1, ..., r_i \in \{1, ..., n\}$ be indep. identically distributed integers.

<u>Thm</u>:

when $i = 1.2 \times n^{1/2}$ then $\Pr[\exists i \neq j: r_i = r_i] \ge \frac{1}{2}$

If H: M-> $\{0,1\}^n$, then Pr[collision] ~ $\frac{1}{2}$ with n^{1/2} hashes



Sample Speeds Crypto++ 5.6.0 [Wei Dai]

AMD Opteron, 2.2 GHz (Linux)

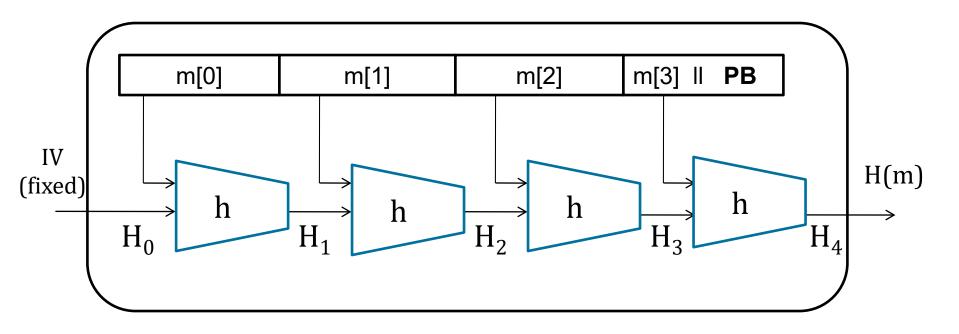
		function	digest	generic	
IN		<u>Iunction</u>	<u>size (bits)</u>	Speed (MB/sec)	<u>attack time</u>
NIST s	Γ	SHA-1	160	153	2^{80}
standards		SHA-256	256	111	2^{128}
		SHA-512	512	99	2 ²⁵⁶
		Whirlpoo	l 512	57	2^{256}

* best known collision finder for SHA-1 requires 2⁵¹ hash evaluations

Merkle-Damgard

How to construct collision resistant hash functions http://www.merkle.com/

The Merkle-Damgard iterated construction



Given $h: T \times X \rightarrow T$ (compression function)

we obtain $H: X^{\leq L} \rightarrow T$. H_i - chaining variables

PB: padding block 10

If no space for PB add another block

Security of Merkle-Damgard

<u>Thm</u>: if *h* is collision resistant then so is *H*. *Proof Idea*:</u>

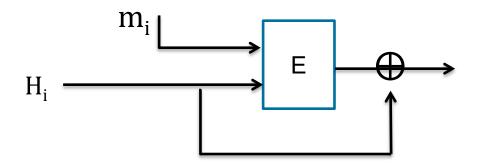
via contrapositive. Collisions on $H \Rightarrow$ collision on h

Suppose H(M) = H(M'). We build collision for h.

Compr. func. from a block cipher

E: $K \times \{0,1\}^n \longrightarrow \{0,1\}^n$ a block cipher.

The **Davies-Meyer** compression function **h(H, m) = E(m, H)⊕H**

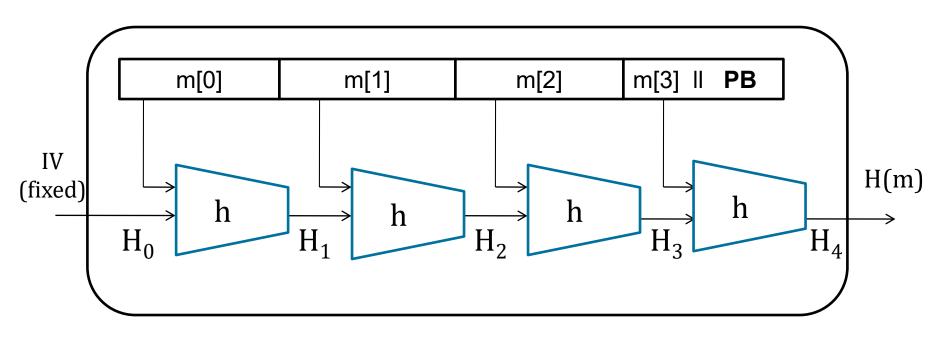


Thm:Suppose E is an ideal cipher
(collection of |K| random perms.).Best possible !!Finding a collision h(H,m)=h(H',m') takes $O(2^{n/2})$ evaluations
of (E,D).

Hash MAC (HMAC)

Most widely used approach on the internet, e.g., SSL, SSH, TLS, etc.

Recall Merkel-Damgard



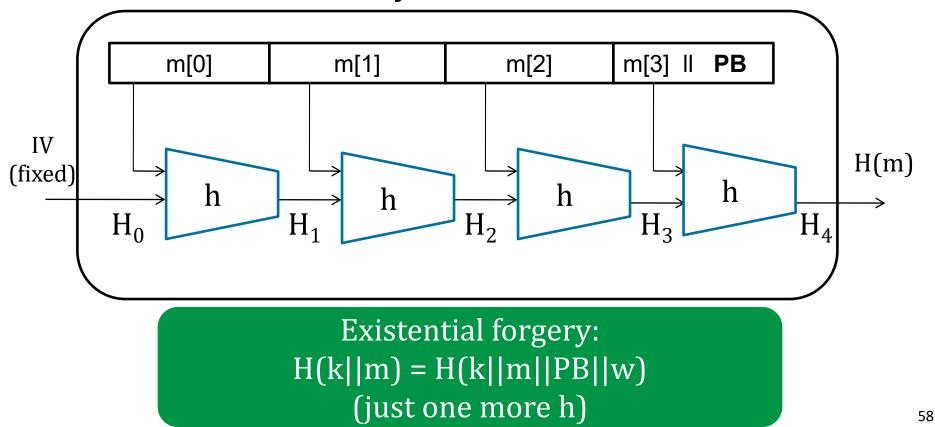
<u>Thm</u>: h collision resistant implies H collision resistant

Can we build a MAC out of H?

Attempt 1

Let $H: X^{\leq L} \rightarrow T$ be a Merkle-Damgard hash, and: S(k,m) = H(k||m)

is this secure? no! why?



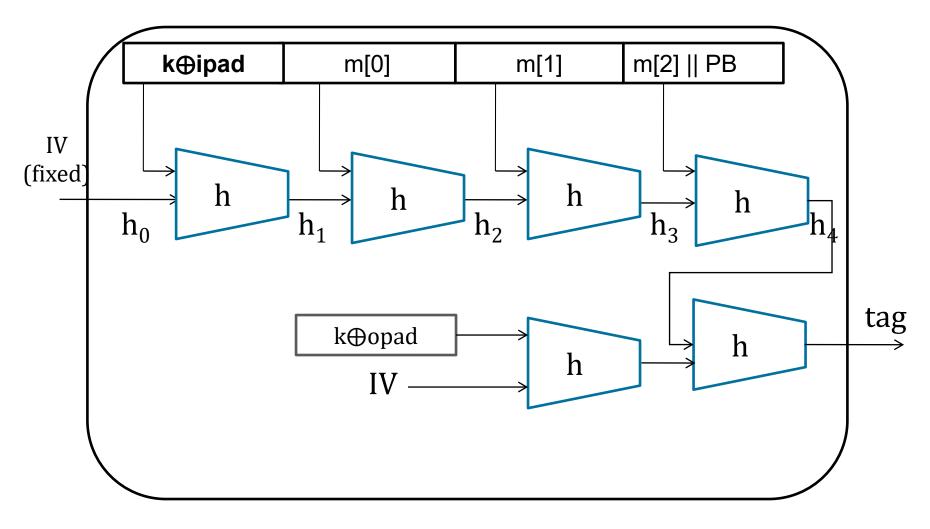
Hash Mac (HMAC)

Build MAC out of a hash

HMAC: $S(k, m) = H(k \oplus opad, H(k \oplus ipad || m))$

• Example: H = SHA-256

HMAC



PB: Padding Block

Further reading

- J. Black, P. Rogaway: CBC MACs for Arbitrary-Length Messages: The Three-Key Constructions. J. Cryptology 18(2): 111-131 (2005)
- K. Pietrzak: A Tight Bound for EMAC. ICALP (2) 2006: 168-179
- J. Black, P. Rogaway: A Block-Cipher Mode of Operation for Parallelizable Message Authentication. EUROCRYPT 2002: 384-397
- M. Bellare: New Proofs for NMAC and HMAC: Security Without Collision-Resistance. CRYPTO 2006: 602-619
- Y. Dodis, K. Pietrzak, P. Puniya: A New Mode of Operation for Block Ciphers and Length-Preserving MACs. EUROCRYPT 2008: 198-219

Questions?

