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Public key encryption:
definitions and security
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Public key encryption

E D

Alice Bob

pk sk

m c c m

Bob:    generates    (PK, SK)    and gives  PK  to Alice 
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Applications
Session setup    (for now, only eavesdropping security)

Non-interactive applications:  (e.g.  Email)
• Bob sends email to Alice encrypted using  pkalice

• Note:   Bob needs  pkalice (public key management)

Generate  (pk, sk)
Alice

choose random x
(e.g.  48 bytes) 

Bobpk

E(pk, x)
x
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Public key encryption
Def:   a public-key encryption system is a triple of algs.   (G, E, D)

• G():   randomized alg. outputs a key pair    (pk,  sk)

• E(pk, m):  randomized alg. that takes  m∈M and outputs c ∈C

• D(sk,c):   det.  alg. that takes  c∈C and outputs m∈M or ⊥

Consistency:    ∀(pk,  sk) output by G :    

∀m∈M:     D(sk,  E(pk, m) ) = m
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Security:   eavesdropping
For   b=0,1   define experiments EXP(0) and EXP(1) as:

Def:  E =(G,E,D) is sem. secure (a.k.a IND-CPA) if for all efficient  A:

AdvSS [A,E]  =  |Pr[EXP(0)=1] – Pr[EXP(1)=1] |  <   negligible

Chal.b Adv. A

(pk,sk)←G()
m0 , m1  ∈ M :    |m0| = |m1|

c ← E(pk, mb) b’ ∈ {0,1}
EXP(b)

pk
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Relation to symmetric cipher security
Recall:   for symmetric ciphers we had two security notions:
• One-time security      and    many-time security (CPA)
• We showed that  one-time security  ⇒ many-time security

For public key encryption:
• One-time security    ⇒ many-time security  (CPA)

(follows from the fact that attacker can encrypt by himself)

• Public key encryption must be randomized
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Security against active attacks

attacker

skserver

pkserver

to: caroline@gmail body

Attacker is given decryption of msgs
that start with “to: attacker”

What if attacker can tamper with ciphertext?

to: attacker@gmail body

attacker:

mail server
(e.g. Gmail)

Caroline
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(pub-key) Chosen Ciphertext Security:  definition
E = (G,E,D)  public-key enc. over  (M,C).  For   b=0,1   define EXP(b):

b

Adv. AChal.

(pk,sk)←G()

b’ ∈ {0,1}

challenge: m0 , m1  ∈ M :    |m0| = |m1|

c ← E(pk, mb)

pk

CCA phase 1: ci ∈ C 

mi ← D(k, ci)

CCA phase 2: ci ∈ C  :     ci ≠ c

mi ← D(k, ci)
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Chosen ciphertext security: definition
Def:   E is CCA secure (a.k.a IND-CCA)  if for all efficient  A:

AdvCCA [A,E]  =  |Pr[EXP(0)=1] – Pr[EXP(1)=1] |  is negligible.

Example:   Suppose                                      ⟶(to: alice,  body) (to: david,  body)

Adv. Ab Chal.

(pk,sk)←G()

b

chal.: (to:alice,  0) ,     (to:alice,  1)

c ← E(pk, mb)

pk

CCA phase 2:    c’ =                                ≠c

m’ ← D(sk, c’ )

(to: david,  b)

(to: david,   b)

c
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Active attacks:   symmetric vs. pub-key
Recall:  secure symmetric cipher provides   authenticated encryption

[ chosen plaintext security   &   ciphertext integrity  ]

• Roughly speaking:     attacker cannot create new ciphertexts
• Implies security against chosen ciphertext attacks

In public-key settings:
• Attacker can create new ciphertexts using  pk !!
• So instead:    we directly require chosen ciphertext security
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Public Key Encryption
from trapdoor permutations: 
Constructions
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Trapdoor functions (TDF)
Def:   a trapdoor func.  X⟶Y  is a triple of efficient algs.   (G, F, F-1)

• G():   randomized alg. outputs a key pair    (pk,  sk)

• F(pk,⋅):   det. alg. that defines a function    X ⟶ Y

• F-1(sk,⋅):    defines a function    Y ⟶ X    that inverts   F(pk,⋅)

More precisely:    ∀(pk,  sk) output by G     

∀x∈X:     F-1(sk,  F(pk, x) ) = x
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Secure Trapdoor Functions (TDFs)
(G, F, F-1) is secure if   F(pk, ⋅)   is a “one-way” function:

can be evaluated, but cannot be inverted without  sk

Def:   (G, F, F-1)  is a secure TDF if for all efficient  A:

AdvOW [A,F]  =  Pr[ x = x’ ]   <  negligible

Adv. AChal.

(pk,sk)←G()

x ⟵ X x’pk,   y ← F(pk, x)R
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Public-key encryption from TDFs 
• (G, F, F-1):    secure TDF   X ⟶ Y       

• (Es, Ds) :   symmetric auth. encryption defined over (K,M,C)

• H: X ⟶ K   a hash function

We construct a pub-key enc. system (G, E, D):

Key generation G:    same as G for TDF
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Public-key encryption from TDFs 

E( pk, m) :
x ⟵ X,    y ⟵ F(pk, x)
k ⟵ H(x),  c ⟵ Es(k, m)
output   (y, c)

D( sk, (y,c) ) :
x ⟵ F-1(sk, y),
k ⟵ H(x),  m ⟵ Ds(k, c)
output   m

• (G, F, F-1):    secure TDF   X ⟶ Y       

• (Es, Ds) :   symmetric auth. encryption defined over (K,M,C)

• H: X ⟶ K   a hash function

R
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In pictures:

Security Theorem:    

If  (G, F, F-1)  is a secure TDF,     (Es, Ds) provides auth. enc.
and   H: X ⟶ K    is a   “random oracle” 
then   (G,E,D) is  CCAro secure.

F(pk, x) Es( H(x),  m )

header body
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Incorrect use of a Trapdoor Function (TDF)

Never encrypt by applying F directly to plaintext:

Problems:
• Deterministic:    cannot be semantically secure !!
• Many attacks exist   (next segment)

E( pk, m) :
output    c ⟵ F(pk, m)

D( sk,  c ) :
output   F-1(sk, c)
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The RSA trapdoor permutation
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Review: trapdoor permutations
Three algorithms:   (G, F, F-1)

• G:   outputs   pk,  sk.       pk defines a function  F(pk, ⋅): X → X

• F(pk, x):   evaluates the function at  x

• F-1(sk, y):  inverts the function at y using sk

Secure trapdoor permutation:   

The function  F(pk, ⋅)  is one-way without the trapdoor sk
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Review: arithmetic mod composites
Let    N = p⋅q where   p,q are prime

ZN = {0,1,2,…,N-1}     ;     (ZN)* =  {invertible elements in ZN}

Facts:     x ∈ ZN  is invertible ⇔ gcd(x,N) = 1

– Number of elements in  (ZN)*  is    ϕ(N) = (p-1)(q-1) = N-p-q+1

Euler’s thm:         ∀ x∈ (ZN)*    :    xϕ(N)  =  1     
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The RSA trapdoor permutation

First published:      Scientific American, Aug. 1977.

Very widely used:

– SSL/TLS:  certificates and key-exchange

– Secure e-mail and file systems

… many others
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The RSA trapdoor permutation
G(): choose random primes   p,q ≈1024 bits.      Set  N=pq. 

choose integers   e , d   s.t. e⋅d = 1   (mod ϕ(N) )  
output    pk = (N, e)    ,     sk = (N, d)

F-1( sk, y) = yd ;      yd =  RSA(x)d = xed = xkϕ(N)+1
=  (xϕ(N))k 

⋅ x = x

F( pk, x ):  ;     RSA(x) = xe (in  ZN)   
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The RSA assumption
RSA assumption:      RSA is  one-way permutation

For all efficient algs.  A:

Pr[ A(N,e,y) = y1/e ] < negligible

where      p,q ← n-bit primes,     N←pq,     y←ZN
*R R
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Review:  RSA pub-key encryption   (ISO std)

(Es, Ds):   symmetric enc. scheme providing auth. encryption.
H:  ZN → K   where  K is key space of (Es,Ds)

• G():    generate RSA params:     pk = (N,e),    sk = (N,d)

• E(pk, m): (1) choose random x in ZN

(2)  y ← RSA(x) = xe ,   k ← H(x)

(3) output    (y ,  Es(k,m) )

• D(sk,  (y, c) ):    output  Ds( H(RSA-1 (y)) ,  c)
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Textbook RSA is insecure
Textbook RSA encryption:

– public key:   (N,e) Encrypt:   c ⟵me          (in  ZN)   
– secret key:   (N,d) Decrypt:   cd ⟶m

Insecure cryptosystem !!  
– Is not semantically secure and many attacks exist

⇒ The RSA trapdoor permutation is not an encryption scheme !
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What is a digital signature?
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Physical signatures
Goal: bind document to author

Bob agrees to pay Alice 1$

Bob agrees to pay Alice 100$

Problem in the digital world:   

anyone can copy Bob’s signature from one doc to another
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Digital signatures
Solution:  make signature depend on document

Bob agrees to pay Alice 1$

secret signing 
key  (sk)

signing
algorithm

signature

Signer

verifier

Verifier

public verification
key  (pk)

‘accept’
or

‘reject’
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A more realistic example

software update

Software vendor clients

secret signing 
key  (sk)

sig

signing
algorithm

verify sig,
install if valid

pk

pk

untrusted
hosting

site
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Digital signatures:   syntax
Def:    a signature scheme  (Gen,S,V)  is a triple of algorithms:

– Gen():  randomized alg. outputs a key pair    (pk, sk)

– S(sk, m∈M)  outputs sig.  σ

– V(pk, m, σ)  outputs ‘accept’ or  ‘reject’

Consistency:    for all (pk,  sk)  output by Gen :    

∀m∈M:     V(pk,  m,  S(sk, m) ) = ‘accept’
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Digital signatures:  security
Attacker’s power:    chosen message attack
• for m1,m2,…,mq attacker is given   σi ← S(sk, mi)

Attacker’s goal:   existential forgery
• produce some new valid message/sig pair  (m, σ).

m  ∉ { m1 , … , mq }

⇒ attacker cannot produce a valid sig. for a new message
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Secure signatures
For a sig. scheme  (Gen,S,V)  and adv.  A  define a game as:

Def:   SS=(Gen,S,V)  is secure if for all “efficient” A:

AdvSIG[A,SS] =  Pr[ A wins] is   “negligible”

Chal. Adv.

(pk,sk)←Gen
m1 ∈ M

σ1 ← S(sk,m1)

Adv. wins if  V(pk,m,σ) = `accept’ and  m ∉ {m1, … , mq}

(m,σ)

m2 , …, mq

σ2 , …, σq

pk



Let  (Gen,S,V) be a signature scheme.

Suppose an attacker is able to find  m0 ≠ m1 such that

V(pk, m0, σ) = V(pk, m1, σ)    for all σ and keys (pk, sk) ← Gen  

Can this signature be secure?

Yes, the attacker cannot forge a signature for either m0 or m1

No, signatures can be forged using a chosen msg attack
It depends on the details of the scheme
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Applications
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Applications
Code signing:
• Software vendor signs code
• Clients have vendor’s pk.    Install software if signature verifies.

software vendor many clients

pk
initial software install  (pk)

[ software udate #1   ,  sig  ]

[ software udate #2   ,  sig  ]

sk
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More generally:
One-time authenticated channel (non-private, one-directional) 

⟹ many-time authenticated channel

Initial software install is authenticated, but not private

Sender Recipients

one-time authenticated channel
(pk, sk) ← Gen 

pk
pk

m1 sig1

m2 sig2

⋮

sig1← S(sk, m1)

sig2← S(sk, m2)

eavesdrop, but not modify
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Important application:  Certificates
Problem:   browser needs server’s public-key to setup a session key
Solution:   server asks trusted 3rd party (CA) to sign its public-key pk

Certificate
Authority (CA)

pk and
proof “I am Gmail”

browser

skCA

check
proofSign Cert using  skCA :

pk is key 
for Gmailpk is key 

for Gmail

choose
(pk, sk) 

Gmail.com

pkCA

verify
cert

Server uses Cert for an extended period  (e.g. one year) 

pkCA

signing key

verification key

CA
sigCA

sig
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Certificates: example
Important fields:



What entity generates the CA’s secret key  skCA ? 

the browser

the NSA

Gmail
the CA
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Constructions overview
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Review:  digital signatures
Def:    a signature scheme  (Gen,S,V)  is a triple of algorithms:

– Gen():  randomized alg. outputs a key pair    (pk, sk)

– S(sk, m∈M)  outputs sig.  σ

– V(pk, m, σ)  outputs ‘yes’ or ‘no’

Security:   

• Attacker’s power:   chosen message attack

• Attacker’s goal:  existential forgery
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Extending the domain with CRHF
Let Sig=(Gen, S, V)  be a sig scheme for short messages,  say  M = {0,1}256

Let   H: Mbig → M   be a hash function   (s.g.  SHA-256)

Def:    Sigbig = (Gen, Sbig , Vbig )    for messages in  Mbig as:

Sbig(sk, m) = S(sk,H(m))     ;     Vbig(pk, m, σ) = V(pk,H(m),σ)

Thm:   If Sig is a secure sig scheme for M and  H  is collision resistant 
then     Sigbig is a secure sig scheme for Mbig

⟹ suffices to construct signatures for short 256-bit messages



Suppose an attacker finds two distinct messages m0, m1

such that   H(m0) = H(m1) .     Can she use this to break Sigbig ?

No, Sigbig is secure because the underlying scheme Sig is

It depends on what underlying scheme Sig is used
Yes, she would ask for a signature on m0 and obtain an
existential forgery for m1
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Primitives that imply signatures:  TDP
Recall:    f: X ⟶X  is a trapdoor permutation (TDP) if:
• easy:   for all  x∈X compute f(x) 
• inverting f is hard, unless one has a trapdoor 
Example:     RSA

Signatures from TDP:    very simple and practical  (next segment)
• Commonly used for signing certificates
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Signatures From Trapdoor 
Permutations
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Review: Trapdoor permutation   (G, F, F-1)

pk sk

Fx y F-1y x

G

Key Gen

f(x) = F(pk, x)  is one-to-one  (X ⟶ X)  and is a one-way function. 
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F(pk,⋅) 

Full Domain Hash Signatures: pictures

msg

H

F-1(sk,⋅) 

sig

S(sk, msg):

sig

V(pk, msg, sig):

msg

H

≟ ⇒
accept

or
reject
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Full Domain Hash (FDH) Signatures
(GTDP, F, F-1 ):     Trapdoor permutation on domain  X
H: M ⟶ X   hash function   (FDH)

(Gen, S, V)  signature scheme:

• Gen:   run GTDP and output   pk,  sk

• S(sk, m∈M):    output     σ ⟵ F-1(sk, H(m))
• V(pk, m, σ):    output ‘accept’  if    F(pk, σ) = H(m)

‘reject’   otherwise 
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Security
Thm [BR]:    (GTDP, F, F-1) secure TDP   ⇒ (Gen, S, V) secure signature

when  H: M ⟶ X  is modeled as an “ideal” hash function

Difficulty in proving security:

Signature
Forger

adversaryus
pk,  F(pk, x)

x

pk

mi

σi
⟲
(m,σ)

How can use use forger?

Solution:   “we” will know sig. on all-but-one of m where adv. queries H().
Hope adversary gives forgery for that single message.
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PKCS1 v1.5 signatures
RSA trapdoor permutation:     pk = (N,e)    ,    sk = (N,d)
• S(sk, m∈M):

output: σ ⟵ (EM)d mod N

• V(pk, m∈M, σ ):    verify that   σe mod N  has the correct format

Security:    no security analysis, not even with ideal hash functions

01 0xFF  0xFF  0xFF  …  0xFF  0xFF 00 H(m)

RSA modulus size  (e.g. 2048 bits)

16 bits
EM =

256 bits
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Many more topics to cover …
• Elliptic Curve Crypto
• Quantum computing
• New key management paradigms:

identity based encryption and functional encryption
• Anonymous digital cash
• Private voting and auction systems
• Computing on ciphertexts:  fully homomorphic encryption
• Lattice-based crypto
• Two party and multi-party computation
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