
EE309 Advanced Programming
Techniques for EE

Lecture 23: Public key cryptography
INSU YUN (윤인수)

School of Electrical Engineering, KAIST

[Slides from Cryptography at Coursera by Dan boneh]

Dan Boneh

Public key encryption:
definitions and security

Dan Boneh

Public key encryption

E D

Alice Bob

pk sk

m c c m

Bob: generates (PK, SK) and gives PK to Alice

Dan Boneh

Applications
Session setup (for now, only eavesdropping security)

Non-interactive applications: (e.g. Email)
• Bob sends email to Alice encrypted using pkalice

• Note: Bob needs pkalice (public key management)

Generate (pk, sk)
Alice

choose random x
(e.g. 48 bytes)

Bobpk

E(pk, x)
x

Dan Boneh

Public key encryption
Def: a public-key encryption system is a triple of algs. (G, E, D)

• G(): randomized alg. outputs a key pair (pk, sk)

• E(pk, m): randomized alg. that takes m∈M and outputs c ∈C

• D(sk,c): det. alg. that takes c∈C and outputs m∈M or ⊥

Consistency: ∀(pk, sk) output by G :

∀m∈M: D(sk, E(pk, m)) = m

Dan Boneh

Security: eavesdropping
For b=0,1 define experiments EXP(0) and EXP(1) as:

Def: E =(G,E,D) is sem. secure (a.k.a IND-CPA) if for all efficient A:

AdvSS [A,E] = |Pr[EXP(0)=1] – Pr[EXP(1)=1] | < negligible

Chal.b Adv. A

(pk,sk)←G()
m0 , m1 ∈ M : |m0| = |m1|

c ← E(pk, mb) b’ ∈ {0,1}
EXP(b)

pk

Dan Boneh

Relation to symmetric cipher security
Recall: for symmetric ciphers we had two security notions:
• One-time security and many-time security (CPA)
• We showed that one-time security ⇒ many-time security

For public key encryption:
• One-time security ⇒ many-time security (CPA)

(follows from the fact that attacker can encrypt by himself)

• Public key encryption must be randomized

Dan Boneh

Security against active attacks

attacker

skserver

pkserver

to: caroline@gmail body

Attacker is given decryption of msgs
that start with “to: attacker”

What if attacker can tamper with ciphertext?

to: attacker@gmail body

attacker:

mail server
(e.g. Gmail)

Caroline

Dan Boneh

(pub-key) Chosen Ciphertext Security: definition
E = (G,E,D) public-key enc. over (M,C). For b=0,1 define EXP(b):

b

Adv. AChal.

(pk,sk)←G()

b’ ∈ {0,1}

challenge: m0 , m1 ∈ M : |m0| = |m1|

c ← E(pk, mb)

pk

CCA phase 1: ci ∈ C

mi ← D(k, ci)

CCA phase 2: ci ∈ C : ci ≠ c

mi ← D(k, ci)

Dan Boneh

Chosen ciphertext security: definition
Def: E is CCA secure (a.k.a IND-CCA) if for all efficient A:

AdvCCA [A,E] = |Pr[EXP(0)=1] – Pr[EXP(1)=1] | is negligible.

Example: Suppose ⟶(to: alice, body) (to: david, body)

Adv. Ab Chal.

(pk,sk)←G()

b

chal.: (to:alice, 0) , (to:alice, 1)

c ← E(pk, mb)

pk

CCA phase 2: c’ = ≠c

m’ ← D(sk, c’)

(to: david, b)

(to: david, b)

c

Dan Boneh

Active attacks: symmetric vs. pub-key
Recall: secure symmetric cipher provides authenticated encryption

[chosen plaintext security & ciphertext integrity]

• Roughly speaking: attacker cannot create new ciphertexts
• Implies security against chosen ciphertext attacks

In public-key settings:
• Attacker can create new ciphertexts using pk !!
• So instead: we directly require chosen ciphertext security

Dan Boneh

Public Key Encryption
from trapdoor permutations:
Constructions

Dan Boneh

Trapdoor functions (TDF)
Def: a trapdoor func. X⟶Y is a triple of efficient algs. (G, F, F-1)

• G(): randomized alg. outputs a key pair (pk, sk)

• F(pk,⋅): det. alg. that defines a function X ⟶ Y

• F-1(sk,⋅): defines a function Y ⟶ X that inverts F(pk,⋅)

More precisely: ∀(pk, sk) output by G

∀x∈X: F-1(sk, F(pk, x)) = x

Dan Boneh

Secure Trapdoor Functions (TDFs)
(G, F, F-1) is secure if F(pk, ⋅) is a “one-way” function:

can be evaluated, but cannot be inverted without sk

Def: (G, F, F-1) is a secure TDF if for all efficient A:

AdvOW [A,F] = Pr[x = x’] < negligible

Adv. AChal.

(pk,sk)←G()

x ⟵ X x’pk, y ← F(pk, x)R

Dan Boneh

Public-key encryption from TDFs
• (G, F, F-1): secure TDF X ⟶ Y

• (Es, Ds) : symmetric auth. encryption defined over (K,M,C)

• H: X ⟶ K a hash function

We construct a pub-key enc. system (G, E, D):

Key generation G: same as G for TDF

Dan Boneh

Public-key encryption from TDFs

E(pk, m) :
x ⟵ X, y ⟵ F(pk, x)
k ⟵ H(x), c ⟵ Es(k, m)
output (y, c)

D(sk, (y,c)) :
x ⟵ F-1(sk, y),
k ⟵ H(x), m ⟵ Ds(k, c)
output m

• (G, F, F-1): secure TDF X ⟶ Y

• (Es, Ds) : symmetric auth. encryption defined over (K,M,C)

• H: X ⟶ K a hash function

R

Dan Boneh

In pictures:

Security Theorem:

If (G, F, F-1) is a secure TDF, (Es, Ds) provides auth. enc.
and H: X ⟶ K is a “random oracle”
then (G,E,D) is CCAro secure.

F(pk, x) Es(H(x), m)

header body

Dan Boneh

Incorrect use of a Trapdoor Function (TDF)

Never encrypt by applying F directly to plaintext:

Problems:
• Deterministic: cannot be semantically secure !!
• Many attacks exist (next segment)

E(pk, m) :
output c ⟵ F(pk, m)

D(sk, c) :
output F-1(sk, c)

Dan Boneh

The RSA trapdoor permutation

Dan Boneh

Review: trapdoor permutations
Three algorithms: (G, F, F-1)

• G: outputs pk, sk. pk defines a function F(pk, ⋅): X → X

• F(pk, x): evaluates the function at x

• F-1(sk, y): inverts the function at y using sk

Secure trapdoor permutation:

The function F(pk, ⋅) is one-way without the trapdoor sk

Dan Boneh

Review: arithmetic mod composites
Let N = p⋅q where p,q are prime

ZN = {0,1,2,…,N-1} ; (ZN)* = {invertible elements in ZN}

Facts: x ∈ ZN is invertible ⇔ gcd(x,N) = 1

– Number of elements in (ZN)* is ϕ(N) = (p-1)(q-1) = N-p-q+1

Euler’s thm: ∀ x∈ (ZN)* : xϕ(N) = 1

Dan Boneh

The RSA trapdoor permutation

First published: Scientific American, Aug. 1977.

Very widely used:

– SSL/TLS: certificates and key-exchange

– Secure e-mail and file systems

… many others

Dan Boneh

The RSA trapdoor permutation
G(): choose random primes p,q ≈1024 bits. Set N=pq.

choose integers e , d s.t. e⋅d = 1 (mod ϕ(N))
output pk = (N, e) , sk = (N, d)

F-1(sk, y) = yd ; yd = RSA(x)d = xed = xkϕ(N)+1
= (xϕ(N))k

⋅ x = x

F(pk, x): ; RSA(x) = xe (in ZN)

Dan Boneh

The RSA assumption
RSA assumption: RSA is one-way permutation

For all efficient algs. A:

Pr[A(N,e,y) = y1/e] < negligible

where p,q ← n-bit primes, N←pq, y←ZN
*R R

Dan Boneh

Review: RSA pub-key encryption (ISO std)

(Es, Ds): symmetric enc. scheme providing auth. encryption.
H: ZN → K where K is key space of (Es,Ds)

• G(): generate RSA params: pk = (N,e), sk = (N,d)

• E(pk, m): (1) choose random x in ZN

(2) y ← RSA(x) = xe , k ← H(x)

(3) output (y , Es(k,m))

• D(sk, (y, c)): output Ds(H(RSA-1 (y)) , c)

Dan Boneh

Textbook RSA is insecure
Textbook RSA encryption:

– public key: (N,e) Encrypt: c ⟵me (in ZN)
– secret key: (N,d) Decrypt: cd ⟶m

Insecure cryptosystem !!
– Is not semantically secure and many attacks exist

⇒ The RSA trapdoor permutation is not an encryption scheme !

Dan Boneh

What is a digital signature?

Dan Boneh

Physical signatures
Goal: bind document to author

Bob agrees to pay Alice 1$

Bob agrees to pay Alice 100$

Problem in the digital world:

anyone can copy Bob’s signature from one doc to another

Dan Boneh

Digital signatures
Solution: make signature depend on document

Bob agrees to pay Alice 1$

secret signing
key (sk)

signing
algorithm

signature

Signer

verifier

Verifier

public verification
key (pk)

‘accept’
or

‘reject’

Dan Boneh

A more realistic example

software update

Software vendor clients

secret signing
key (sk)

sig

signing
algorithm

verify sig,
install if valid

pk

pk

untrusted
hosting

site

Dan Boneh

Digital signatures: syntax
Def: a signature scheme (Gen,S,V) is a triple of algorithms:

– Gen(): randomized alg. outputs a key pair (pk, sk)

– S(sk, m∈M) outputs sig. σ

– V(pk, m, σ) outputs ‘accept’ or ‘reject’

Consistency: for all (pk, sk) output by Gen :

∀m∈M: V(pk, m, S(sk, m)) = ‘accept’

Dan Boneh

Digital signatures: security
Attacker’s power: chosen message attack
• for m1,m2,…,mq attacker is given σi ← S(sk, mi)

Attacker’s goal: existential forgery
• produce some new valid message/sig pair (m, σ).

m ∉ { m1 , … , mq }

⇒ attacker cannot produce a valid sig. for a new message

Dan Boneh

Secure signatures
For a sig. scheme (Gen,S,V) and adv. A define a game as:

Def: SS=(Gen,S,V) is secure if for all “efficient” A:

AdvSIG[A,SS] = Pr[A wins] is “negligible”

Chal. Adv.

(pk,sk)←Gen
m1 ∈ M

σ1 ← S(sk,m1)

Adv. wins if V(pk,m,σ) = `accept’ and m ∉ {m1, … , mq}

(m,σ)

m2 , …, mq

σ2 , …, σq

pk

Let (Gen,S,V) be a signature scheme.

Suppose an attacker is able to find m0 ≠ m1 such that

V(pk, m0, σ) = V(pk, m1, σ) for all σ and keys (pk, sk) ← Gen

Can this signature be secure?

Yes, the attacker cannot forge a signature for either m0 or m1

No, signatures can be forged using a chosen msg attack
It depends on the details of the scheme

Dan Boneh

Applications

Dan Boneh

Applications
Code signing:
• Software vendor signs code
• Clients have vendor’s pk. Install software if signature verifies.

software vendor many clients

pk
initial software install (pk)

[software udate #1 , sig]

[software udate #2 , sig]

sk

Dan Boneh

More generally:
One-time authenticated channel (non-private, one-directional)

⟹ many-time authenticated channel

Initial software install is authenticated, but not private

Sender Recipients

one-time authenticated channel
(pk, sk) ← Gen

pk
pk

m1 sig1

m2 sig2

⋮

sig1← S(sk, m1)

sig2← S(sk, m2)

eavesdrop, but not modify

Dan Boneh

Important application: Certificates
Problem: browser needs server’s public-key to setup a session key
Solution: server asks trusted 3rd party (CA) to sign its public-key pk

Certificate
Authority (CA)

pk and
proof “I am Gmail”

browser

skCA

check
proofSign Cert using skCA :

pk is key
for Gmailpk is key

for Gmail

choose
(pk, sk)

Gmail.com

pkCA

verify
cert

Server uses Cert for an extended period (e.g. one year)

pkCA

signing key

verification key

CA
sigCA

sig

Dan Boneh

Certificates: example
Important fields:

What entity generates the CA’s secret key skCA ?

the browser

the NSA

Gmail
the CA

Dan Boneh

Constructions overview

Dan Boneh

Review: digital signatures
Def: a signature scheme (Gen,S,V) is a triple of algorithms:

– Gen(): randomized alg. outputs a key pair (pk, sk)

– S(sk, m∈M) outputs sig. σ

– V(pk, m, σ) outputs ‘yes’ or ‘no’

Security:

• Attacker’s power: chosen message attack

• Attacker’s goal: existential forgery

Dan Boneh

Extending the domain with CRHF
Let Sig=(Gen, S, V) be a sig scheme for short messages, say M = {0,1}256

Let H: Mbig → M be a hash function (s.g. SHA-256)

Def: Sigbig = (Gen, Sbig , Vbig) for messages in Mbig as:

Sbig(sk, m) = S(sk,H(m)) ; Vbig(pk, m, σ) = V(pk,H(m),σ)

Thm: If Sig is a secure sig scheme for M and H is collision resistant
then Sigbig is a secure sig scheme for Mbig

⟹ suffices to construct signatures for short 256-bit messages

Suppose an attacker finds two distinct messages m0, m1

such that H(m0) = H(m1) . Can she use this to break Sigbig ?

No, Sigbig is secure because the underlying scheme Sig is

It depends on what underlying scheme Sig is used
Yes, she would ask for a signature on m0 and obtain an
existential forgery for m1

Dan Boneh

Primitives that imply signatures: TDP
Recall: f: X ⟶X is a trapdoor permutation (TDP) if:
• easy: for all x∈X compute f(x)
• inverting f is hard, unless one has a trapdoor
Example: RSA

Signatures from TDP: very simple and practical (next segment)
• Commonly used for signing certificates

Dan Boneh

Signatures From Trapdoor
Permutations

Dan Boneh

Review: Trapdoor permutation (G, F, F-1)

pk sk

Fx y F-1y x

G

Key Gen

f(x) = F(pk, x) is one-to-one (X ⟶ X) and is a one-way function.

Dan Boneh

F(pk,⋅)

Full Domain Hash Signatures: pictures

msg

H

F-1(sk,⋅)

sig

S(sk, msg):

sig

V(pk, msg, sig):

msg

H

≟ ⇒
accept

or
reject

Dan Boneh

Full Domain Hash (FDH) Signatures
(GTDP, F, F-1): Trapdoor permutation on domain X
H: M ⟶ X hash function (FDH)

(Gen, S, V) signature scheme:

• Gen: run GTDP and output pk, sk

• S(sk, m∈M): output σ ⟵ F-1(sk, H(m))
• V(pk, m, σ): output ‘accept’ if F(pk, σ) = H(m)

‘reject’ otherwise

Dan Boneh

Security
Thm [BR]: (GTDP, F, F-1) secure TDP ⇒ (Gen, S, V) secure signature

when H: M ⟶ X is modeled as an “ideal” hash function

Difficulty in proving security:

Signature
Forger

adversaryus
pk, F(pk, x)

x

pk

mi

σi
⟲
(m,σ)

How can use use forger?

Solution: “we” will know sig. on all-but-one of m where adv. queries H().
Hope adversary gives forgery for that single message.

Dan Boneh

PKCS1 v1.5 signatures
RSA trapdoor permutation: pk = (N,e) , sk = (N,d)
• S(sk, m∈M):

output: σ ⟵ (EM)d mod N

• V(pk, m∈M, σ): verify that σe mod N has the correct format

Security: no security analysis, not even with ideal hash functions

01 0xFF 0xFF 0xFF … 0xFF 0xFF 00 H(m)

RSA modulus size (e.g. 2048 bits)

16 bits
EM =

256 bits

Dan Boneh

Many more topics to cover …
• Elliptic Curve Crypto
• Quantum computing
• New key management paradigms:

identity based encryption and functional encryption
• Anonymous digital cash
• Private voting and auction systems
• Computing on ciphertexts: fully homomorphic encryption
• Lattice-based crypto
• Two party and multi-party computation

	EE309 Advanced Programming �Techniques for EE��Lecture 23: Public key cryptography
	Public key encryption:�definitions and security
	Public key encryption
	Applications
	Public key encryption
	Security: eavesdropping
	Relation to symmetric cipher security
	Security against active attacks
	(pub-key) Chosen Ciphertext Security: definition
	Chosen ciphertext security: definition
	Active attacks: symmetric vs. pub-key
	Public Key Encryption�from trapdoor permutations: Constructions
	Trapdoor functions (TDF)
	Secure Trapdoor Functions (TDFs)
	Public-key encryption from TDFs
	Public-key encryption from TDFs
	슬라이드 번호 20
	Incorrect use of a Trapdoor Function (TDF)
	The RSA trapdoor permutation
	Review: trapdoor permutations
	Review: arithmetic mod composites
	The RSA trapdoor permutation
	The RSA trapdoor permutation
	The RSA assumption
	Review: RSA pub-key encryption (ISO std)
	Textbook RSA is insecure
	What is a digital signature?
	Physical signatures
	Digital signatures
	A more realistic example
	Digital signatures: syntax
	Digital signatures: security
	Secure signatures
	슬라이드 번호 110
	Applications
	Applications
	More generally:
	Important application: Certificates
	Certificates: example
	슬라이드 번호 119
	Constructions overview
	Review: digital signatures
	Extending the domain with CRHF
	슬라이드 번호 132
	Primitives that imply signatures: TDP
	Signatures From Trapdoor Permutations
	Review: Trapdoor permutation (G, F, F-1)
	Full Domain Hash Signatures: pictures
	Full Domain Hash (FDH) Signatures
	Security
	PKCS1 v1.5 signatures
	Many more topics to cover …

