EE309 Advanced Programming Techniques for EE

Lecture 24: Modern systems

INSU YUN (윤인수)

School of Electrical Engineering, KAIST

[Slides from 15-213: Introduction to Computer Systems at CMU]

Systems

 A system is any collection of components combined to create an entity that is intended to accomplish some particular task(s) or goal(s).

Three properties

- Correctness: To accomplish the goal
- Performance: To accomplish the goal with many users
- Security: To accomplish the goal with even malicious users

What we have studied

- Files IO
- Allocation
- Buffer overflow
- Network programming
- Concurrent programming
- Cryptography

Moore's Law Origins

April 19, 1965

Cramming more components onto integrated circuits

With unit cost falling as the number of components per circuit rises, by 1975 economics may dictate squeezing as many as 65,000 components on a single silicon chip

By Gordon E. Moore

Director, Research and Development Laboratories, Fairchild Semiconductor division of Fairchild Camera and Instrument Corp.

Moore's Law Origins

Moore's Thesis

- Minimize price per device
- Optimum number of devices
 / chip increasing 2x / year

Later

- 2x / 2 years
- "Moore's Prediction"

Moore's Law: 50 Years

Transistor Count by Year

What Moore's Law Has Meant

1976 Cray 1

- 250 M Ops/second
- ~170,000 chips
- 0.5B transistors
- 5,000 kg, 115 KW
- \$9M
- 80 manufactured

2014 iPhone 6

- > 4 B Ops/second
- ~10 chips
- > 3B transistors
- 120 g, < 5 W
- **\$649**
- 10 million sold in first 3 days

What Moore's Law Has Meant

1965 Consumer Product

2015 Consumer Product

Apple A8 Processor 2 B transistors

What Moore's Law Could Mean

2015 Consumer Product

2065 Consumer Product

- Portable
- Low power
- Will drive markets & innovation

Requirements for Future Technology

Must be suitable for portable, low-power operation

- Consumer products
- Internet of Things components
- Not cryogenic, not quantum

Must be inexpensive to manufacture

- Comparable to current semiconductor technology
 - O(1) cost to make chip with O(N) devices

Need not be based on transistors

- Memristors, carbon nanotubes, DNA transcription, ...
- Possibly new models of computation
- But, still want lots of devices in an integrated system

Visualizing 10¹⁷ Devices

If devices were the size of a grain of sand

0.1 m³ 3.5 X 10⁹ grains

1 million m³ 0.35 X 10¹⁷ grains

Increasing Transistor Counts

1. Chips have gotten bigger

1 area doubling / 10 years

2. Transistors have gotten smaller

4 density doublings / 10 years

Will these trends continue?

Reaching 2065 Goal

Target

- 10¹⁷ devices
- 400 mm²
- L = 63 pm

Is this possible?

Not with 2-d fabrication

Parameters

- 10¹⁷ devices
- 100,000 logical layers
 - Each 50 nm thick
 - ~1,000,000 physical layers
 - To provide wiring and isolation
- L = 20 nm
 - 10x smaller than today

2065 mm³

Towards scalability

Distributed system

Distributed System

Information is Beautiful // UPDATED 2nd Nov 23

source: news reports, LifeArchitect.ai

* = parameters undisclosed // see the data

Cloud computing

Cyber Physical Systems

CADMI

Cyber Physical Systems

Operating system

Next courses?

- **EE323: Computer network**
- EE324: Network programming
- **EE412: Introduction to Big Data analytics**
- EE414: Embedded system
- **EE415:** Operating system for Electrical engineering