EE309 Advanced Programming Techniques for EE

Lecture 24: Modern systems INSU YUN (윤인수)

School of Electrical Engineering, KAIST
[Slides from 15-213: Introduction to Computer Systems at CMU]

Systems

- A system is any collection of components combined to create an entity that is intended to accomplish some particular task(s) or goal(s).
- Three properties
- Correctness: To accomplish the goal
- Performance: To accomplish the goal with many users
- Security: To accomplish the goal with even malicious users

What we have studied

■ Files IO

- Allocation
- Buffer overflow

■ Network programming
■ Concurrent programming
■ Cryptography

Moore's Law Origins

April 19, 1965

Cramming more components onto integrated circuits

With unit cost falling as the number of components per circuit rises, by 1975 economics may dictate squeezing as many as $\mathbf{6 5 , 0 0 0}$ components on a single silicon chip

By Gordon E. Moore

Director, Research and Development Laboratories, Fairchild Semiconductor division of Fairchild Camera and Instrument Corp.

Moore's Law Origins

■ Moore's Thesis

- Minimize price per device
- Optimum number of devices / chip increasing $2 x$ / year
- Later
- 2x/2 years
- "Moore's Prediction"

Moore's Law: 50 Years

Transistor Count by Year

- Desktop

■ Embedded
\triangle GPU
\times Server
—General Trend
-Moore's Prediction

Sample of
117 processorxchips

What Moore's Law Has Meant

- 1976 Cray 1
- 250 M Ops/second
- ~170,000 chips
- 0.5B transistors
- 5,000 kg, 115 KW
- \$9M
- 80 manufactured

■ 2014 iPhone 6

- > 4 B Ops/second
- ~10 chips
- > 3B transistors
- $120 \mathrm{~g},<5 \mathrm{~W}$
- \$649
- 10 million sold in first 3 days

What Moore's Law Has Meant

■ 1965 Consumer Product

■ 2015 Consumer Product

Apple A8 Processor
2 B transistors

What Moore's Law Could Mean

- 2015 Consumer ■ 2065 Consumer Product Product

- Portable
- Low power
- Will drive markets \& innovation

Requirements for Future Technology

- Must be suitable for portable, low-power operation
- Consumer products
- Internet of Things components
- Not cryogenic, not quantum
- Must be inexpensive to manufacture
- Comparable to current semiconductor technology
- $\mathrm{O}(1)$ cost to make chip with $\mathrm{O}(N)$ devices
- Need not be based on transistors
- Memristors, carbon nanotubes, DNA transcription, ...
- Possibly new models of computation
- But, still want lots of devices in an integrated system

Moore's Law: 100 Years

Device Count by Year

Visualizing 10^{17} Devices

If devices were the size of a grain of sand

$0.1 \mathrm{~m}^{3}$
3.5×10^{9} grains

1 million m^{3}
0.35×10^{17} grains

Increasing Transistor Counts

1. Chips have gotten bigger

- 1 area doubling / 10 years

2. Transistors have gotten smaller

- 4 density doublings / 10 years

Will these trends continue?

Reaching 2065 Goal

- Target
- 10^{17} devices
- $400 \mathrm{~mm}^{2}$
- $L=63 \mathrm{pm}$

■ Is this possible?

Not with 2-d fabrication

Fabricating in 3 Dimensions

Parameters

- 10^{17} devices
- 100,000 logical layers
- Each 50 nm thick
- ~1,000,000 physical layers
- To provide wiring and isolation
- $L=20 \mathrm{~nm}$
- $10 x$ smaller than today

2065 mm 3

Towards scalability

Distributed system

Distributed System

The Rise and Rise of A.I.
size $=$ no. of parameters

Amazon-owned Chinese Google Meta/Facebook Microsoft OpenAl Other

Cloud computing

Cyber Physical Systems

Embedded systems in cars

Rain-Sensing System

[^0]
Cyber Physical Systems

Operating system

Next courses?

■ EE323: Computer network
■ EE324: Network programming

■ EE412: Introduction to Big Data analytics
■ EE414: Embedded system

■ EE415: Operating system for Electrical engineering

[^0]: Electronic Stability Control (ESC)

