
EE309
Lecture 3: EE209/EE485

Review 2
INSU YUN (윤인수)

School of Electrical Engineering, KAIST

[Lecture slides based on EE209]

3

Motivation for Memory Hierarchy

Faster storage technologies are more expensive

Cost more money per byte

Have lower storage capacity

Require more power and generate more heat

The gap between processing and memory is widening

Processors have been getting faster and faster

Memory speed is not improving as dramatically

Well-written programs tend to exhibit good locality

Across time: repeatedly referencing the same variables

Across space: often accessing other variables located nearby

Want the speed of fast storage with the cost and capacity of slow storage

Key idea: memory hierarchy!

4

Simple Three-Level Hierarchy

Registers

Usually reside directly on the processor chip

Essentially no latency, referenced directly in instructions

Low capacity (e.g., 32-512 bytes)

Main memory

Around 100 times slower than a clock cycle

Constant access time for any memory location

Modest capacity (e.g., 1 GB-512GB)

Disk

Around 100,000 times slower than main memory

Faster when accessing many bytes in a row

High capacity (e.g., 1-10s of TB)

http://images.google.com/imgres?imgurl=http://www.pclaunches.com/entry_images/1007/09/seagate_momentus5400-PSD-2.jpg&imgrefurl=http://www.pclaunches.com/hard_drive/seagate_momentus_5400_psd_laptop_hybrid_drives_announced.php&h=637&w=450&sz=82&hl=en&start=35&sig2=_ME26RXfKNlTi6p619PNog&tbnid=xwNBeEytE4fYUM:&tbnh=137&tbnw=97&ei=musDSItThbp6sfXZIg&prev=/images%3Fq%3Dhard%2Bdrive%26start%3D20%26gbv%3D2%26ndsp%3D20%26hl%3Den%26sa%3DN

5

Widening Processor/Memory Gap

Gap in speed increasing from 1986 to 2000

CPU speed improved ~55% per year

Main memory speed improved only ~10% per year

Main memory as major performance bottleneck

Many programs stall waiting for reads and writes to finish

Changes in the memory hierarchy

Increasing the number of registers

8 integer registers in the x86 vs 16 in x86_64

Adding caches between registers and main memory

Level-1, -2, -3 cache on chip

6

An Example Memory Hierarchy

registers

L1
cache (SRAM)

main memory
(DRAM)

local secondary storage
(local disks)

Larger,
slower,

and
cheaper
(per byte)
storage
devices

remote secondary storage
(tapes, distributed file systems, Web servers)

Local disks hold files
retrieved from disks on
remote network servers

Main memory holds disk
blocks retrieved from local

disks

L2, L3 (shared)
cache (SRAM)

L1 cache holds cache lines retrieved
from the L2 cache memory

CPU registers hold words retrieved from
L1 cache

L2 cache holds cache lines
retrieved from main memory

L3 cache is typically shared across
CPU cores

L0:

L1:

L2:

L3:

L4:

L5:

Smaller,
faster,
and

costlier
(per byte)
storage
devices

7

Locality of Reference

Two kinds of locality

Temporal locality: recently referenced items are likely to be referenced in

near future

Spatial locality: items with nearby addresses tend to be referenced close

together in time

8

Locality of Reference

Two kinds of locality

Temporal locality: recently referenced items are likely to be referenced in

near future

Spatial locality: items with nearby addresses tend to be referenced close

together in time

Locality example
sum = 0;
for (i = 0; i < n; i++)

sum += a[i];
return sum;

9

Locality of Reference

Two kinds of locality

Temporal locality: recently referenced items are likely to be referenced in

near future

Spatial locality: items with nearby addresses tend to be referenced close

together in time

Locality example

Program data

Temporal: the variable sum

Spatial: variable a[i+1] accessed soon after a[i]

sum = 0;
for (i = 0; i < n; i++)

sum += a[i];
return sum;

10

Locality of Reference

Two kinds of locality

Temporal locality: recently referenced items are likely to be referenced in

near future

Spatial locality: items with nearby addresses tend to be referenced close

together in time

Locality example

Program data

Temporal: the variable sum

Spatial: variable a[i+1] accessed soon after a[i]

Instructions

Temporal: cycle through the for-loop repeatedly

Spatial: reference instructions in sequence

sum = 0;
for (i = 0; i < n; i++)

sum += a[i];
return sum;

11

Locality Makes Caching Effective

Cache

Smaller and faster storage device that acts as a staging area

… for a subset of the data in a larger, slower device

Caching and the memory hierarchy

Storage device at level k is a cache for level k+1

Registers as cache of L1/L2 cache and main memory

Main memory as a cache for the disk

Disk as a cache of files from remote storage

Locality of access is the key

Most accesses satisfied by first few (faster) levels

Very few accesses go to the last few (slower) levels

12

Cache Hit and Miss

Cache hit

Program accesses a block

available in the cache

Satisfy directly from cache

e.g., request for “10”

Cache miss

Program accesses a block not

available in the cache

Bring item into the cache

e.g., request for “13”

Where to place the item?

Which item to evict?

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

8 9 14 3

Level k:

Level k+1:

4

4 10

10

13

Automatic Allocation: Virtual Memory

Give programmer the illusion of a very large memory

Large: 4 GB of memory with 32-bit addresses

Uniform: contiguous memory locations, from 0 to 232-1

Independent of

the actual size of the main memory

the presence of any other processes sharing the computer

Key idea #1: separate “address” from “physical location”
Virtual addresses: generated by the program

Memory locations: determined by the hardware and OS

Key idea #2: caching

Swap virtual pages between main memory and the disk

One of the best ideas in computer systems!

14

Private Address Space: Illusion

Process 1 Process 2

Memory
for

Process
1

00000000

FFFFFFFF

Memory
for

Process
2

00000000

FFFFFFFF

Hardware and OS give each application process
the illusion that it is the only process using memory

15

Private Address Space: Reality

Process 1 VM Process 2 VM
00000000

FFFFFFFF

00000000

FFFFFFFF

All processes use the same real memory
Hardware and OS provide application programs with a virtual view of
memory, i.e. virtual memory (VM)

unused

unused

Real Memory

DiskMemory is divided
into pages

16

Making Good Use of Memory and Disk

Good use of the disk

Read and write data in large “pages”

… to amortize the cost of “seeking” on the disk

e.g., page size of 4 KB

Good use of main memory

Although the address space is large

… programs usually access only small portions at a time

Keep the “working set” in main memory

Demand paging: only bring in a page when needed

Page replacement: selecting good page to swap out

Goal: avoid thrashing

Continually swapping between memory and disk

17

Virtual Address for a Process

Virtual page number

Number of the page in the virtual address space

Extracted from the upper bits of the (virtual) address

… and then mapped to a physical page number

Offset in a page

Number of the byte within the page

Extracted from the lower bits of the (virtual) address

… and then used as offset from start of physical page

Example: 4 KB pages

20-bit page number: 220 virtual pages

12-bit offset: bytes 0 to 212-1

18

Virtual Address for a Process

Virtual Address Space Physical Address Space

virtual
page number

offset in page
physical

page number

offset in page

Translate virtual page number
to physical page number

32-bit address

19

Page Table to Manage the Cache
Current location of each virtual page

Physical page number, or

Disk address (or null if unallocated)

Example

Page 0: at location xx on disk

Page 1: at physical page 2

Page 3: not yet allocated

Page “hit” handled by hardware

Compute the physical address

Map virtual page # to physical page #

Concatenate with offset in page

Read or write from main memory

Using the physical address

Page “miss” triggers an exception…

4

3

1

0

2

10

27

1

4

virtual
pages

physical
pages

…

20

“Miss” Triggers Page Fault

Accessing the page not in main memory

V Physical or
disk address

0 xx

1 2

0 yy

0 null

1 1

…

0
1
2
3
4

4

3

1

0

2

10

27

1

4

virtual
pages

physical
pages

…

21

“Miss” Triggers Page Fault

Accessing the page not in main memory

4

3

1

0

2

10

27

1

4

virtual
pages

physical
pages

…

V Physical or
disk address

0 xx

1 2

0 yy

0 null

1 1

…

0
1
2
3
4

movl 00002104, %eax

Virtual page #2 at location yy on disk!

22

OS Handles the Page Fault

Bringing page in from the disk

If needed, swap out old page (e.g., #4)

Bring in the new page (page #2)

Update the page table entries

4

3

1

0

2

10

27

1

4

virtual
pages

physical
pages

…

V Physical or
disk address

0 xx

1 2

0 yy

0 null

1 1

…

0
1
2
3
4

23

OS Handles the Page Fault

Bringing page in from the disk

If needed, swap out old page (e.g., #4)

Bring in the new page (page #2)

Update the page table entries

4

3

1

0

2

10

27

1

4

virtual
pages

physical
pages

…

V Physical or
disk address

0 xx

1 2

0 yy

0 null

1 1

…

0
1
2
3
4

24

OS Handles the Page Fault

Bringing page in from the disk

If needed, swap out old page (e.g., #4)

Bring in the new page (page #2)

Update the page table entries

4

3

1

0

2

10

27

1

4

virtual
pages

physical
pages

…

V Physical or
disk address

0 xx

1 2

0 yy

0 null

1 1

…

0
1
2
3
4 0 zz

25

OS Handles the Page Fault

Bringing page in from the disk

If needed, swap out old page (e.g., #4)

Bring in the new page (page #2)

Update the page table entries

4

3

1

0

2

10

27

1

2

virtual
pages

physical
pages

…

V Physical or
disk address

0 xx

1 2

0 yy

0 null

1 1

…

0
1
2
3
4 0 zz

1 1

26

VM as a Tool for Memory Protection

Memory protection

Prevent processes from unauthorized reading or writing of memory

User process should not be able to

Modify the read-only text section in its own address space

Read or write operating-system code and data structures

Read or write the private memory of other processes

Hardware support

Permission bits in page-table entries (e.g., read-only)

Separate identifier for each process (i.e., process-ID)

Switching between unprivileged mode (for user processes) and privileged mode (for

the operating system)

28

Example: Opening a File

FILE *fopen("myfile.txt", "r")

Opens the named file and return a stream

Includes a mode, such as “r” for read or “w” for write

Creates a FILE data structure for the file

Mode, status, buffer, …

Assigns fields and returns a pointer

Opens or creates the file, based on the mode

Write (‘w’): create the file with default permissions

Read (‘r’): open the file as read-only

Append (‘a’): open or create file, and seek to the end

29

Example: Formatted I/O

int fprintf(fp1, "Number: %d\n", i)

Convert and write output to stream in specified format

int fscanf(fp1, "FooBar: %d", &i)

Read from stream in format and assign converted values

Specialized versions

printf(…) is just fprintf(stdout, …)

scanf(…) is just fscanf(stdin, …)

<stdio.h> has a variable FILE* stdin;

30

Layers of Abstraction

Disk

Driver

Storage

File System

disk blocks

variable-length segments

hierarchical file system

Operating
System

Stdio Library
FILE * stream

App PrgmUser
process

int fd

File descriptor:
An integer that
uniquely identifies
an open file

31

System-Level Functions for I/O

int creat(char *pathname, mode_t mode);

Creates a new file named pathname, and returns a file descriptor

int open(char *pathname, int flags, mode_t mode);

Opens the file pathname and returns a file descriptor

int close(int fd);

Closes fd

int read(int fd, void *buf, int count);

Reads up to count bytes from fd into the buffer at buf

int write(int fd, void *buf, int count);

Writes up to count bytes into fd from the buffer at buf

int lseek(int fd, int offset, int whence);

Assigns the file pointer of fd to a new value by applying an offset

32

Example: open()

Converts a path name into a file descriptor

int open(const char *pathname, int flags, mode_t mode);

Arguments

pathname: name of the file

flags: bit flags for O_RDONLY, O_WRONLY, O_RDWR

mode: permissions to set if file must be created

Returns

File descriptor (or -1 if error)

Performs a variety of checks

e.g., whether the process is entitled to access the file

Underlies fopen()

33

Example: read()

Reads bytes from a file descriptor

int read(int fd, void *buf, int count);

Arguments

File descriptor: integer descriptor returned by open()

Buffer: pointer to memory to store the bytes it reads

Count: maximum number of bytes to read

Returns

Number of bytes read

Value of 0 if nothing more to read

Value of -1 if an error

Performs a variety of checks

Whether file has been opened, whether reading is okay

Underlies getchar(), fgets(), scanf(), etc.

35

Creating a New Process

Cloning an existing process

Parent process creates a new child process

The two processes then run concurrently

Child process inherits state from parent

Identical (but separate) copy of virtual

address space

Copy of the parent’s open file descriptors

Parent and child share access to open files

Child then runs independently

Executing independently, including invoking a

new program

Reading and writing its own address space

parent

child

36

Fork System-Level Function

fork() is called once

but returns twice, once in each process

because a new process is created, as a result of fork()

1+1 = 2

Telling which process is which

Parent: fork() returns the child’s process ID

Child: fork() returns 0

pid = fork();
if (pid != 0) {

/* in parent */
…

} else {
/* in child */
…

}

37

Executing a New Program

fork() copies the state of the parent process

Child continues running the parent program

… with a copy of the process memory and registers

Need a way to invoke a new program

In the context of the newly-created child process

Example

execvp("ls", argv);
fprintf(stderr, "exec failed\n");
exit(EXIT_FAILURE);

program
NULL-terminated array

Contains command-line arguments
(to become “argv[]” of ls)

38

Waiting for the Child to Finish

Parent should wait for children to finish

Example: a shell waiting for operations to complete

Waiting for a child to terminate: wait()

Blocks until some child terminates

Returns the process ID of the child process

Or returns -1 if no children exist (i.e., already exited)

Waiting for specific child to terminate: waitpid()

Blocks till a child with particular process ID terminates

#include <sys/types.h>
#include <sys/wait.h>
pid_t wait(int *status);
pid_t waitpid(pid_t pid, int *status, int options);

	EE309�Lecture 3: EE209/EE485 �Review 2
	Lecture 17:�Memory Management
	Motivation for Memory Hierarchy
	Simple Three-Level Hierarchy
	Widening Processor/Memory Gap
	An Example Memory Hierarchy
	Locality of Reference
	Locality of Reference
	Locality of Reference
	Locality of Reference
	Locality Makes Caching Effective
	Cache Hit and Miss
	Automatic Allocation: Virtual Memory
	Private Address Space: Illusion
	Private Address Space: Reality
	Making Good Use of Memory and Disk
	Virtual Address for a Process
	Virtual Address for a Process
	Page Table to Manage the Cache
	“Miss” Triggers Page Fault
	“Miss” Triggers Page Fault
	OS Handles the Page Fault
	OS Handles the Page Fault
	OS Handles the Page Fault
	OS Handles the Page Fault
	VM as a Tool for Memory Protection
	EE209 #19:�I/O Management
	Example: Opening a File
	Example: Formatted I/O
	Layers of Abstraction
	System-Level Functions for I/O
	Example: open()
	Example: read()
	EE209 #20:�Process Management
	Creating a New Process
	Fork System-Level Function
	Executing a New Program
	Waiting for the Child to Finish

