
EE309 Advanced Programming
Techniques for EE

Lecture 5: Files and Directories
INSU YUN (윤인수)

School of Electrical Engineering, KAIST

[Some Lecture Slides Based on Prof. Shin SEUNGWON 2020]

Today’s lecture

• Learn APIs for files and directories

Standard I/O

Standard I/O Functions

• The C standard library (libc.so) contains a collection of higher-level standard I/O
functions

• Examples of standard I/O functions:
• Opening and closing files (fopen and fclose)
• Reading and writing bytes (fread and fwrite)
• Reading and writing text lines (fgets and fputs)
• Formatted reading and writing (fscanf and fprintf)

#include <stdio.h>
extern FILE *stdin; /* standard input (descriptor 0) */
extern FILE *stdout; /* standard output (descriptor 1) */
extern FILE *stderr; /* standard error (descriptor 2) */

int main() {
fprintf(stdout, "Hello, world\n");

}

Buffered I/O: Motivation

• Applications often read/write one character at a time
• getc, putc, ungetc
• gets, fgets

• Read line of text one character at a time, stopping at newline

• Implementing as Unix I/O calls expensive
• read and write require Unix kernel calls

• > 10,000 clock cycles

• Solution: Buffered read
• Use Unix read to grab block of bytes
• User input functions take one byte at a time from buffer

• Refill buffer when empty

unreadalready readBuffer

Buffering in Standard I/O

• Standard I/O functions use buffered I/O

• Buffer flushed to output fd on “\n”, call to fflush or exit, or return from main.

printf("h");

h e l l o \n . .

printf("e");
printf("l");

printf("l");
printf("o");

printf("\n");

fflush(stdout);

buf

write(1, buf, 6);

Standard I/O Buffering in Action

• You can see this buffering in action for yourself, using the
always fascinating Linux strace program:

linux> strace ./hello
execve("./hello", ["hello"], [/* ... */]).
...
write(1, "hello\n", 6) = 6
...
exit_group(0) = ?

#include <stdio.h>

int main()
{

printf("h");
printf("e");
printf("l");
printf("l");
printf("o");
printf("\n");
fflush(stdout);
exit(0);

}

Standard I/O: In detail

FILE* based I/O

• One of the basic ways to manage input and output is to use
the FILE set of functions provided by libc.

• The FILE structure is a set of data items that are created to manage
input and output for the programmer.

• An abstraction of “high level” reading and writing files that avoids
some of the details of programming.

• Almost always used for reading and writing ASCII data

fopen()

• The fopen function opens a file for IO and returns a pointer
to a FILE* structure:

• FILE *fopen(const char *path, const char *mode);

• Where,
• path is a string containing the absolute or relative path to the file to

be opened.
• mode is a string describing the ways the file will be used
• For example,

FILE *file = fopen(filename, "r+");
• Returns a pointer to FILE* if successful, NULL otherwise

• You don’t have to allocate or deallocate the FILE* structure

fopen() mode

• “r” - Open text file for reading. The stream is positioned at the
beginning of the file.

• “r+”-Open for reading and writing. The stream is positioned at the
beginning of the file.

• “w” - Truncate file to zero length or create text file for writing. The
stream is positioned at the beginning of the file.

• “w+” - Open for reading and writing. The file is created if it does
not exist, otherwise it is truncated.

• “a” Open for appending (writing at end of file). The file is created
if it does not exist.

• “a+” Open for reading and appending (writing at end of file). The
file is created if it does not exist.

Reading the file

• There are two dominant ways to read the file, fscanf and
fgets

• fscanf reads the data from the file just like scanf, just reading and
writing, e.g.,

• fgets reads the a line of text from the file, e.g.,

Writing the file

• There are two dominant ways to write the file, fprintf and
fputs

• fprintf writes the data to the file just like printf, just reading and
writing, e.g.,

• fputs writes the a line of text to the file, e.g.,

fflush()

• FILE*-based IO is buffered
• fflush attempts to reset/the flush state

• int fflush(FILE *stream);

• FILE*-based writes are buffered, so there may be data written, but not yet
pushed to the OS/disk.

• fflush() forces a write of all buffered data
• FILE*-based reads are buffered, so the current data (in the process space)

may not be current
• fflush() discards buffered data from the underlying file

• If the stream argument is NULL, fflush() flushes all open output
streams

fclose()

• fclose() closes the file and releases the memory associated
with the FILE* structure.

Example program

fopen() vs. open()

• Key differences between fopen and open
• fopen provides you with buffering IO that may or may not turn out to be

a faster than what you're doing with open.
• fopen does line ending translation if the file is not opened in binary mode,

which can be very helpful if your program is ever ported to a non-Unix
environment.

• A FILE * gives you the ability to use fscanf and other stdio functions that
parse out data and support formatted output.

• When to use (IMO)
• use FILE* style I/O

• High level abstraction is required (porting), for ASCII processing
• file handle I/O

• If you deeply understand how to handle IO, for binary data processing

Buffered I/O

• When the system is buffering
• It may read more that requested in the expectation you will

• read more later (read buffering)
• it may not commit all bytes to the target (write buffering)

Unbuffered I/O ?

Metadata

stat(), lstat()

• Returns a structure of information about the named file

• lstat() vs stat(): Returns information about the symbolic
link, not the file referenced by the symbolic link

• Explain the symbolic link later

#include <sys/stat.h>

int stat(const char *restrict pathname, struct stat *restrict buf);
int lstat(const char *restrict pathname, struct stat *restrict buf);

All return: 0 if OK, 1 on error

struct stat {
mode_t st_mode; /* file type & mode (permissions) */
ino_t st_ino; /* i-node number (serial number) */
dev_t st_dev; /* device number (file system) */
dev_t st_rdev; /* device number for special files */
nlink_t st_nlink; /* number of links */
uid_t st_uid; /* user ID of owner */
gid_t st_gid; /* group ID of owner */
off_t st_size; /* size in bytes, for regular files */
time_t st_atime; /* time of last access */
time_t st_mtime; /* time of last modification */
time_t st_ctime; /* time of last file status change */
blksize_t st_blksize; /* best I/O block size */
blkcnt_t st_blocks; /* number of disk blocks allocated */

};

File types

• We've talked about two different types of files so far: regular files
and directories.

• Most files on a UNIX system are either regular files or directories,
but there are additional types of files. The types are:

• Regular file
• Directory file
• Socket: A type of file used for network communication between processes.

A socket can also be used for non-network communication between
processes on a single host.

• Symbolic link. A type of file that points to another file (Later)
• …

Example
int main(int argc, char *argv[]) {

int i;
struct stat buf;
char *ptr;

for (i = 1; i < argc; i++) {
printf("%s: ", argv[i]);
if (lstat(argv[i], &buf) < 0) {

perror("lstat error");
continue;

}
if (S_ISREG(buf.st_mode))

ptr = "regular";
else if (S_ISDIR(buf.st_mode))

ptr = "directory";
else if (S_ISLNK(buf.st_mode))

ptr = "symbolic link";
else if (S_ISSOCK(buf.st_mode))

ptr = "socket";
else

ptr = "** unknown mode **";
printf("%s\n", ptr);

}
}

$ sudo ./lstat /etc/passwd \
/etc \
/var/run/mysqld/mysqld.sock \
/dev/stdin

/etc/passwd: regular
/etc: directory
/var/run/mysqld/mysqld.sock: socket
/dev/stdin: symbolic link

Q: What happens if I
change lstat to stat?

Macro Type of file

S_ISREG() regular file

S_ISDIR() directory file

S_ISLNK() symbolic link

S_ISSOCK() socket

… …

Directories

Directories

• Directory consists of an array of links
• Each link maps a filename to a file

• Each directory contains at least two entries
• . (dot) is a link to itself
• .. (dot dot) is a link to the parent directory in the directory hierarch

y (next slide)

• Commands for manipulating directories
• mkdir: create empty directory
• ls: view directory contents
• rmdir: delete empty directory

Directory Hierarchy

• All files are organized as a hierarchy anchored by root directory n
amed / (slash)

• Kernel maintains current working directory (cwd) for each process
• Modified using the cd command

/

bin/ dev/ etc/ home/ usr/

bash tty1 group passwd droh/ bryant/ include/ bin/

stdio.h vimsys/

unistd.h

hello.c

Reading Directories
#include <dirent.h>

DIR *opendir(const char *pathname);
// Returns: pointer if OK, NULL on error

struct dirent *readdir(DIR *dp);
// Returns: pointer if OK, NULL at end of d
irectory or error

int closedir(DIR *dp);
// Returns: 0 if OK, 1 on error

struct dirent {
ino_t d_ino; /* Inode number */
off_t d_off; /* Not an offset; see below */
unsigned short d_reclen; /* Length of this record */
unsigned char d_type; /* Type of file; not supported

by all filesystem types */
char d_name[256]; /* Null-terminated filename */

};

#include <dirent.h>
#include <stdio.h>
#include <stdlib.h>

int main(int argc, char** argv) {
DIR *dir;
struct dirent *ent;
if ((dir = opendir (argv[1])) != NULL) {
/* print all the files and directories wit

hin directory */
while ((ent = readdir (dir)) != NULL) {
printf ("%s ", ent->d_name);

}
printf("\n");
closedir (dir);

} else {
/* could not open directory */
perror ("");
return EXIT_FAILURE;

}
}

$./listdir /
home srv etc opt root Docker li
b mnt usr media lib64 sys dev s
bin boot bin run lib32 libx32 i
nit proc snap tmp var lost+foun
d .. .

#include <dirent.h>

int scandir(const char *restrict dirp,
struct dirent ***restrict namelist,
int (*filter)(const struct dirent *),
int (*compar)(const struct dirent **,

const struct dirent **));

int alphasort(const struct dirent **a, const struct dirent **b);

#define _DEFAULT_SOURCE
#include <dirent.h>
#include <stdio.h>
#include <stdlib.h>

int
main(void)
{

struct dirent **namelist;
int n;

n = scandir(".", &namelist, NULL, alphasort);
if (n == -1) {

perror("scandir");
exit(EXIT_FAILURE);

}

while (n--) {
printf("%s\n", namelist[n]->d_name);
free(namelist[n]);

}
free(namelist);

exit(EXIT_SUCCESS);
}

Security

Access control

• The UNIX filesystem implements discretionary access control
through file permissions set by user

• The permissions are set at the discretion of the user

• Every file in the file system has a set of bits which determine who
has assess to the file

• User: the owner is typically the creator of the file, and the entity in control
of the access control policy

• Group: a set of users on the system setup by the admin
• Other: the set of everyone on the system

• Note: this can be overridden by the “root” user

Unix/Linux file system permissions

• There are three permissions in the UNIX filesystem
• READ: allows the subject (process) to read the contents of the file
• WRITE: allows the subject (process) to alter the contents of the file
• EXECUTE: allows the subject (process) to execute the contents of the

file (e.g., shell program, executable)

• For directory
• READ: allows the subject (process) to list the files in the directory
• WRITE: allows the subject (process) to write (e.g., create, rename,

delete, modify) files in the directory
• EXECUTE: allows the subject (process) to access files in the directory

• e.g., to create (or delete) a file, you also need executable permission

Unix/Linux Access Policy

• Really, this is a bit string encoding an access policy:
rwx rwx rwx

• And a policy is encoded as “r”, “w”, “x” if enabled, and “-” if not,
e.g.,

rwxrw---x

• Says user can read, write and execute, group can read and write,
and world can execute only

Other

Group

Owner

$ ls -l .
total 28
-rw-r--r-- 1 insu insu 0 Aug 14 20:20 fopen.dat
-rwxr-xr-x 1 insu insu 16464 Aug 14 20:20 hello
-rw-r--r-- 1 insu insu 16 Aug 14 20:20 hello.c
-rwxr-xr-x 1 insu insu 12 Aug 14 20:20 hello.sh

The nine file access permission bits,
from <sys/stat.h>

st_mode mask Meaning

S_IRUSR user-read

S_IWUSR user-write

S_IXUSR user-execute

S_IRGRP group-read

S_IWGRP group-write

S_IXGRP group-execute

S_IROTH other-read

S_IWOTH other-write

S_IXOTH other-execute

$ sudo ./permission /etc/passwd \
/etc \
/var/run/mysqld/mysqld.sock \
/dev/stdin

/etc/passwd: rw-r--r--
/etc: rwxr-xr-x
/var/run/mysqld/mysqld.sock: rwxrwxrwx
/dev/stdin: rwxrwxrwx

int main(int argc, char *argv[]) {
int i;
struct stat buf;
char *ptr;

for (i = 1; i < argc; i++) {
printf("%s: ", argv[i]);
if (lstat(argv[i], &buf) < 0) {
perror("lstat error");
continue;

}

char str[] = "---------";
mode_t mode = buf.st_mode;

if (mode & S_IRUSR) str[0] = 'r';
if (mode & S_IWUSR) str[1] = 'w';
if (mode & S_IXUSR) str[2] = 'x';

if (mode & S_IRGRP) str[3] = 'r';
if (mode & S_IWGRP) str[4] = 'w';
if (mode & S_IXGRP) str[5] = 'x';

if (mode & S_IROTH) str[6] = 'r';
if (mode & S_IWOTH) str[7] = 'w';
if (mode & S_IXOTH) str[8] = 'x';

printf("%s\n", str);
}

}

User IDs and Group IDs

• Every process has four or more IDs associated with it

• Real user id (uid), Real group ID (gid)
• who we really are
• determined when we log in

• Effective user id (euid), Effective group ID (egid)
• used for file access permission checks

setuid & setgid

• Every file has an owner and a group owner.
• the owner: st_uid of the stat structure
• the group owner: st_gid

• When we execute a program file,
• Usually, the effective user ID == the real user ID
• setuid & setgid: Special flags in the file’s mode

• If set, set the effective user ID (group ID) of the process to the owner (group)
of the file

• rwsrwsrwx: a bit string encoding for setuid & setgid
• S_ISUID, S_ISGID: mask for setuid & setgid

How permission checking works

• If the effective user ID of the process is 0 (the superuser), access is allowed.

• If the effective user ID of the process equals the owner ID of the file (i.e., the
process owns the file), access is allowed

• If the effective group ID of the process (or one of the supplementary group
IDs of the process) equals the group ID of the file, access is allowed

• If the appropriate other access permission bit is set, access is allowed.

• Otherwise, permission is denied.

Quiz

$ id
uid=1002(alice) gid=1003(alice) groups=1003(alice)

Can I read these files?
$ ls -l
total 16
-rw-rw-r-- 1 alice alice 12 Aug 14 21:45 file1
-rw-rw-r-- 1 root alice 12 Aug 14 21:42 file2
-rw-rw-r-- 1 root root 12 Aug 14 21:45 file3
-r--r----- 1 root root 12 Aug 14 21:46 file4

Can I read file4 using cat?
$ ls -l
total 60
-rwxr-xr-x 1 alice alice 43416 Aug 14 21:47 cat
...
-r--r----- 1 root root 12 Aug 14 21:46 file4

Can I read file4 using cat?
$ ls -l
total 60
-rwsr-xr-x 1 alice alice 43416 Aug 14 21:47 cat
...
-r--r----- 1 root root 12 Aug 14 21:46 file4

Can I read file4 using cat?
$ ls -l
total 60
-rwsr-xr-x 1 root alice 43416 Aug 14 21:47 cat
...
-r--r----- 1 root root 12 Aug 14 21:46 file4

$ man chmod

• Change file mode bits (i.e., permissions)
• chmod [OPTION]... OCTAL-MODE FILE...

• e.g.,
• chmod 755 hello.txt

Change hello.txt’s permission to rwxr-xr-x
(Octal mode: r = 4, w = 2, x = 1)

• chmod 4755 hello.txt
Change hello.txt’s permission to rwsr-x-r-x
(Special permissions: setuid = 4, setgid = 2, sticky bit = 1)

$ man chown

• Change file owner and group
• chown [OPTION]... [OWNER][:[GROUP]] FILE...

• e.g.,
• chown root hello.txt

Change the owner of hello.txt to “root”
• chown root:staff hello.txt

Likewise, but also change its group to “staff”

Symbolic link

• A symbolic link is an indirect pointer to a file
• e.g., .lnk file in Windows

• You can create it using ln command
• e.g., ln –s [src] [dst]

• Interesting property regarding security: You can create
symbolic link even you don’t have enough permission for
source

• e.g., You can make symbolic link for a file even you cannot read the
file, or the file has setuid permission

Quiz

• Let’s assume that this is a setuid root binary
• NOTE: access() is a function that checks permission with an
original user (not root).

• Can I write a file that only root can do?

if(!access(file,W_OK)) {
f = fopen(file,"w+");
operate(f);
...

}
else {
fprintf(stderr,"Unable to open file %s.\n",file);

}

Yes. That’s what we say
time-of-check to time-

of-use (TOCTOU)

f*, *at functions

• There are multiple variant functions that prevent TOCTOU
• openat()
• faccessat()
• fstat()
• fchown(),
• …

• You should use them for protecting from TOCTOU
• In the previous example, open a file first, then use fstat to check

permission manually

	EE309 Advanced Programming Techniques for EE��Lecture 5: Files and Directories
	Today’s lecture
	Standard I/O
	Standard I/O Functions
	Buffered I/O: Motivation
	Buffering in Standard I/O
	Standard I/O Buffering in Action
	Standard I/O: In detail
	FILE* based I/O
	슬라이드 번호 10
	fopen()
	fopen() mode
	Reading the file
	Writing the file
	fflush()
	fclose()
	Example program
	슬라이드 번호 18
	fopen() vs. open()
	슬라이드 번호 20
	슬라이드 번호 21
	Buffered I/O
	Metadata
	stat(), lstat()
	슬라이드 번호 26
	File types
	Example
	Directories
	Directories	
	Directory Hierarchy	
	Reading Directories
	슬라이드 번호 35
	슬라이드 번호 36
	슬라이드 번호 37
	슬라이드 번호 38
	Security
	Access control
	Unix/Linux file system permissions
	Unix/Linux Access Policy
	The nine file access permission bits, from <sys/stat.h>
	슬라이드 번호 44
	User IDs and Group IDs
	setuid & setgid
	How permission checking works
	Quiz
	슬라이드 번호 49
	$ man chmod
	$ man chown
	Symbolic link
	Quiz
	f*, *at functions

