
EE309 Advanced Programming
Techniques for EE

Lecture 9: Dynamic allocation
(Real-world)

INSU YUN (윤인수)

School of Electrical Engineering, KAIST

Malloc implementation

• dlmalloc – General purpose allocator
• Old glibc

• ptmalloc2 – glibc
• jemalloc – FreeBSD and Firefox
• tcmalloc – Google
• libumem – Solaris

glibc malloc (ptmalloc2)

• A default allocator for Linux, which we are working with
• Many similarities with others (e.g., a Windows allocator or others)

• Derived from ptmalloc, which is derived from dlmalloc (Doug
Lea malloc)

• “Heap” style: A larger region of memory (heap) can contain
chunks of various sizes

• Allows for multiple heaps for one application

• Threading support: Performance improvement

• In dlmalloc,
• when two threads call malloc at the same time ONLY one thread

can enter the critical section, since freelist data structure is shared
among all the available threads

• Hence memory allocation takes time in multi threaded applications,
resulting in performance degradation

• In ptmalloc2,
• when two threads call malloc at the same time memory is allocated

immediately since each thread maintains a separate heap segment
and hence freelist data structures maintaining those heaps are also
separate.

• This act of maintaining separate heap and freelist data structures for
each thread is called per thread arena.

ptmalloc2 vs dlmalloc

glibc malloc (ptmalloc2)

• A default allocator for Linux, which we are working with
• Many similarties with others (e.g., a Windows allocator or others)

• Derived from ptmalloc, which is derived from dlmalloc (Doug Lea
malloc)

• “Heap” style: A larger region of memory (heap) can contain chunks of
various sizes

• Allows for multiple heaps for one application

Terminologies

• Arena: A structure that is shared among one or more threads which
contains references to one or more heaps, as well as linked lists of
chunks within those heaps which are "free“. Threads assigned to each
arena will allocate memory from that arena's free lists.

• Heap: A contiguous region of memory that is subdivided into chunks to
be allocated. Each heap belongs to exactly one arena.

Terminologies

• Chunk: A small range of memory that can be allocated (owned by the
application), freed (owned by glibc), or combined with adjacent
chunks into larger ranges. Note that a chunk is a wrapper around the
block of memory that is given to the application. Each chunk exists in
one heap and belongs to one arena.

• Memory: A portion of the application's address space which is
typically backed by RAM or swap.

Arenas and Heaps

• To efficiently handle multi-threaded applications, glibc's malloc allows
for more than one region of memory to be active at a time

• Different threads can access different regions of memory without interfering
with each other

• These regions of memory are collectively called "arenas“

• main arena: The application's initial heap
• A static variable in the malloc code
• Next to link additional arenas
• For exploit, this is an address in libc

(i.e., if we leak this memory, we can break ASLR)

http://core-analyzer.sourceforge.net/index_files/Page335.html

http://core-analyzer.sourceforge.net/index_files/Page335.html

malloc_state (glibc 2.31)

struct malloc_state
{

/* Serialize access. */
__libc_lock_define (, mutex);
/* Flags (formerly in max_fast). */
int flags;

/* Fastbins */
mfastbinptr fastbinsY[NFASTBINS];
/* Base of the topmost chunk -- not otherwise kept in a bin */
mchunkptr top;
/* The remainder from the most recent split of a small request */
mchunkptr last_remainder;
/* Normal bins packed as described above */
mchunkptr bins[NBINS * 2 - 2];

/* Bitmap of bins */
unsigned int binmap[BINMAPSIZE];

malloc_state (glibc 2.31)

/* Linked list */
struct malloc_state *next;
/* Linked list for free arenas. Access to this field is serialized

by free_list_lock in arena.c. */
struct malloc_state *next_free;
/* Number of threads attached to this arena. 0 if the arena is on

the free list. Access to this field is serialized by
free_list_lock in arena.c. */

INTERNAL_SIZE_T attached_threads;
/* Memory allocated from the system in this arena. */
INTERNAL_SIZE_T system_mem;
INTERNAL_SIZE_T max_system_mem;

};

typedef struct malloc_state *mstate;

Chunks

• Glibc malloc divides a large region of memory (a "heap") into chunks
of various sizes.

• Each chunk includes meta-data about how big it is (via a size field in
the chunk header), and thus where the adjacent chunks are.

• When a chunk is in use by the application, the only data that's
"remembered" is the size of the chunk.

• When the chunk is free'd, the memory that used to be application
data is re-purposed for additional arena-related information, such as
pointers within linked lists, such that suitable chunks can quickly be
found and re-used when needed.

• Also, the last word in a free'd chunk contains a copy of the chunk size
(with the three LSBs set to zeros, vs the three LSBs of the size at the
front of the chunk which are used for flags).

struct malloc_chunk {
INTERNAL_SIZE_T mchunk_prev_size; /* Size of previou

s chunk, if it is free. */
INTERNAL_SIZE_T mchunk_size; /* Size in bytes,

including overhead. */
struct malloc_chunk* fd; /* double links --

used only if this chunk is free. */
struct malloc_chunk* bk;
/* Only used for large blocks: pointer to next larger size

. */
struct malloc_chunk* fd_nextsize; /* double links --

used only if this chunk is free. */
struct malloc_chunk* bk_nextsize;

};

typedef struct malloc_chunk* mchunkptr;

Chunk flags

• Since all chunks are multiples of 8 bytes, the 3 LSBs of the chunk size
can be used for flags. These three flags are defined as follows:

• A (0x04): Allocated Arena - the main arena uses the application's heap.
Other arenas use mmap'd heaps.

• M (0x02): MMap'd chunk - this chunk was allocated with a single call
to mmap and is not part of a heap at all.

• P (0x01): Previous chunk is in use - if set, the previous chunk is still
being used by the application, and thus the prev_size field is invalid.

Bins

• Within each arena, chunks are either in use by the application or
they're free (available).

• In-use chunks are not tracked by the arena.
• Free chunks are stored in various lists based on size and history, so

that the library can quickly find suitable chunks to satisfy allocation
requests. The lists, called "bins"

Types of bins

• Fast: Small chunks are stored in size-specific bins. Chunks added to a
fast bin ("fastbin") are not combined with adjacent chunks. Fastbin
chunks are stored in an array of singly-linked lists, since they're all the
same size and chunks in the middle of the list need never be accessed.

• Unsorted: When chunks are free'd they're initially stored in a single
bin. They're sorted later, in malloc, in order to give them one chance
to be quickly re-used.

Types of bins

• Small: The normal bins are divided into "small" bins, where each
chunk is the same size. When a chunk is added to these bins, they're
first combined with adjacent chunks to "coalesce" them into larger
chunks. Small and large chunks are doubly-linked so that chunks may
be removed from the middle.

• Large: A chunk is "large" if its bin may contain more than one size. For
small bins, you can pick the first chunk and just use it. For large bins,
you have to find the "best" chunk, and possibly split it into two chunks
(one the size you need, and one for the remainder).

Thread cache (tcache)

• For NUMA architectures, coordinate thread locality, sort threads by
core, etc.

• Each thread has a per-thread cache (called the tcache) containing a
small collection of chunks which can be accessed without needing to
lock an arena.

• These chunks are stored as an array of singly-linked lists
• Each bin contains one size chunk, so the array is indexed (indirectly) by

chunk size.
• Unlike fastbins, the tcache is limited in how many chunks are allowed

in each bin (tcache_count).
• If the tcache bin is empty for a given requested size, the fallback is to

use the normal malloc routines i.e. locking the thread's arena and
working from there.

Thread cache (tcache)

Malloc algorithm

• If there is a suitable (exact match only) chunk in the tcache, it is
returned to the caller.

• If the request is large enough, mmap() is used to request memory
directly from the operating system.

• If the appropriate fastbin has a chunk in it, use that.
• If the appropriate smallbin has a chunk in it, use that.
• … (large)
• Use chunks in unsorted bin (if not, move them to regular bins)
• Split off part of the “top” chunk, possibly enlarging "top" beforehand.

Free algorithm

• If there is room in the tcache, store the chunk there and return.
• If the chunk is small enough, place it in the appropriate fastbin.
• If the chunk was mmap'd, munmap it.
• See if this chunk is adjacent to another free chunk and coalesce if it is.
• Place the chunk in the unsorted list, unless it's now the "top" chunk.
• …

Platform-specific Thresholds and Constants

tcmalloc

• TCMalloc assigns each thread a thread-local cache.

• Small allocations are satisfied from the thread-local cache.

• Objects are moved from central data structures into a thread-
local cache as needed, and periodic garbage collections are
used to migrate memory back from a thread-local cache into
the central data structures.

tcmalloc

• TCMalloc treats objects with size <= 256K ("small" objects)
differently from larger objects.

• Large objects are allocated directly from the central heap
using a page-level allocator (a page is a 8K aligned region of
memory). I.e., a large object is always page-aligned and
occupies an integral number of pages.

• A run of pages can be carved up into a sequence of small
objects, each equally sized. For example a run of one page
(8K) can be carved up into 64 objects of size 128 bytes each.

Small object (< 256K)

• Each small object size maps to one of approximately 88
allocatable size-classes.

• For example, all allocations in the range 961 to 1024 bytes are rounded
up to 1024.

• The size-classes are spaced so that small sizes are separated by 8 bytes,
larger sizes by 16 bytes, even larger sizes by 32 bytes, and so forth.

• A thread cache contains a singly linked list of free objects per size-class.

Medium object (256K <= size < 1MB)

• A large object size (> 256K) is rounded up to a page size (8K) and is
handled by a central page heap.

• The central page heap is again an array of free lists. For i < 256, the
kth entry is a free list of runs that consist of k pages.

• The 256th entry is a free list of runs that have length >= 256 pages:

• An allocation for k pages is satisfied by looking in the kth free list. If
that free list is empty, we look in the next free list, and so forth.

Large object (size >= 1MB)

• If an allocation for k pages is satisfied by a run of pages of
length > k, the remainder of the run is re-inserted back into
the appropriate free list in the page heap (use best-fit + red-
black tree)

span

• The heap managed by TCMalloc consists of a set of pages.
• A run of contiguous pages is represented by a Span object.
• A span can either be allocated, or free.

• If free, the span is one of the entries in a page heap linked-list.
• If allocated, it is either a large object that has been handed off to

the application, or a run of pages that have been split up into a
sequence of small objects.

• If split into small objects, the size-class of the objects is recorded in
the span.

span

• A central array indexed by page number can be used to find
the span to which a page belongs. For example, span a
below occupies 2 pages, span b occupies 1 page, span c
occupies 5 pages and span d occupies 3 pages.

span

• A 32-bit address space can fit 2^20 4K pages, so this central
array takes 4MB of space, which seems acceptable.

• On 64-bit machines, we use a 3-level radix tree instead of an
array to map from a page number to the corresponding span
pointer.

Deallocation

• When an object is deallocated, we compute its page number and
look it up in the central array to find the corresponding span object.

• The span tells us whether or not the object is small, and its size-
class if it is small.

• If the object is small, we insert it into the appropriate free list in the
current thread's thread cache.

• If the thread cache now exceeds a predetermined size (2MB by default),
we run a garbage collector that moves unused objects from the thread
cache into central free lists.

• If the object is large, the span tells us the range of pages covered
by the object.

• Suppose this range is [p,q]. We also lookup the spans for pages p-1 and
q+1.

• If either of these neighboring spans are free, we coalesce them with the
[p,q] span. The resulting span is inserted into the appropriate free list in
the page heap.

	EE309 Advanced Programming Techniques for EE��Lecture 9: Dynamic allocation (Real-world)
	Malloc implementation	
	glibc malloc (ptmalloc2)
	ptmalloc2 vs dlmalloc
	glibc malloc (ptmalloc2)
	Terminologies
	Terminologies
	Arenas and Heaps
	슬라이드 번호 9
	malloc_state (glibc 2.31)
	malloc_state (glibc 2.31)
	Chunks
	슬라이드 번호 13
	Chunk flags
	슬라이드 번호 15
	Bins
	Types of bins
	Types of bins
	Thread cache (tcache)
	Thread cache (tcache)
	Malloc algorithm
	Free algorithm
	Platform-specific Thresholds and Constants
	tcmalloc
	tcmalloc
	Small object (< 256K)
	Medium object (256K <= size < 1MB)
	Large object (size >= 1MB)
	span
	span
	span
	슬라이드 번호 32
	슬라이드 번호 33
	Deallocation
	슬라이드 번호 35

