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Today
 Deadlock
 Semaphores, Events, and Queues
 Reader-Writer Locks and Starvation
 Thread-Safe API Design
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Deadlock
 A program is deadlocked when 

it is waiting for an event which 
cannot ever happen
 Mathematical impossibility, not 

just practical

 Most common form:
 Thread A is waiting for thread B to 

do something
 Thread B is waiting for thread A to 

do something
 Neither can make forward progress
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Deadlock caused by wrong locking order
void *thread_1(void *arg) {

pthread_mutex_lock(&mA);
pthread_mutex_lock(&mB);

// do stuff ...

pthread_mutex_unlock(&mA);
pthread_mutex_unlock(&mB);

}

void *thread_2(void *arg) {
pthread_mutex_lock(&mB);
pthread_mutex_lock(&mA);

// do stuff ...

pthread_mutex_unlock(&mB);
pthread_mutex_unlock(&mA);

}

Live coding demo: deadlocks
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Deadlock Visualized in Progress Graph
Any trajectory that enters
the deadlock region will
eventually reach the
deadlock state where each 
thread is waiting for the other 
to release a lock 

Other trajectories luck out and 
skirt the deadlock region

Unfortunate fact: trajectory 
variations may mean deadlock 
bugs are nondeterministic
(don’t always manifest, 
making them hard to debug)

Thread 0

Thread 1

L(b) U(b)L(a) U(a)

U(a)

L(a)

L(b)

U(b)
Forbidden region
for b

Forbidden region
for a

Deadlock state: 
cannot move 
up or right –
both threads 
are stuck

Deadlock
region
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Fix this deadlock with consistent ordering
void *thread_1(void *arg) {

pthread_mutex_lock(&mA);
pthread_mutex_lock(&mB);

// do stuff ...

pthread_mutex_unlock(&mA);
pthread_mutex_unlock(&mB);

}

void *thread_2(void *arg) {
pthread_mutex_lock(&mA);
pthread_mutex_lock(&mB);

// do stuff ...

pthread_mutex_unlock(&mB);
pthread_mutex_unlock(&mA);

}
L(a) U(b)L(b) U(a)

U(a)

L(a)

L(b)

U(b)
Forbid-
den 
region
for b

Forbidden region
for a

Always possible to move
up or move right 

Inconsistent unlock order
does not matter
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Recall: Semaphores
 Integer value, always >= 0
 P(s) operation (aka sem_wait)
 If s is zero, wait for a V operation to happen.
 Then subtract 1 from s and return.

 V(s) operation (aka sem_post)
 Add 1 to s.
 If there are any threads waiting inside a P operation,

resume one of them

 Any thread may call P; any thread may call V; no ordering 
requirements
 Key difference from mutexes
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Queues, Producers, and Consumers

 Common synchronization pattern:
 Producer waits for empty slot, inserts item in queue, and notifies consumer
 Consumer waits for item, removes it from queue, and notifies producer

 Examples
 Multimedia processing:

 Producer creates video frames, consumer renders them 
 Event-driven graphical user interfaces

 Producer detects mouse clicks, mouse movements, and keyboard hits 
and inserts corresponding events in queue

 Consumer retrieves events from queue and paints the display

producer
thread

shared
queue

consumer
thread
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Producer-Consumer on 1-entry Queue
 Maintain two semaphores: full + empty

empty
buffer

0

full

1

empty

full
buffer

1

full

0

empty
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Why 2 Semaphores for 1-entry Queue?
 Consider multiple producers & multiple consumers 

 Producers will contend with each to get empty
 Consumers will contend with each other to get full

shared
queue

P1

Pn





C1

Cm





P(&shared.full);
item = shared.buf;
V(&shared.empty);

Consumers
P(&shared.empty);
shared.buf = item;
V(&shared.full);

Producers
fullempty
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Producer-Consumer on n-element Queue

 Requires a mutex and two counting semaphores:
 mutex: enforces mutually exclusive access to the queue’s innards
 slots: counts the available slots in the queue
 items: counts the available items in the queue

 Makes use of semaphore values > 1 (up to n)

P1

Pn





C1

Cm







Between 0 and n elements
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Readers-Writers Problem

 Problem statement:
 Reader threads only read the object
 Writer threads modify the object (read/write access)
 Writers must have exclusive access to the object
 Unlimited number of readers can access the object

 Occurs frequently in real systems, e.g.,
 Online airline reservation system
 Multithreaded caching Web proxy

W1

W3

W2

R1

R3

R2

Read/
Write
Access

Read-only
Access
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Pthreads Reader/Writer Lock
 Data type pthread_rwlock_t
 Operations
 Acquire read lock
pthread_rwlock_rdlock(pthread_rwlock_t *rwlock)

 Acquire write lock
pthread_rwlock_wrlock(pthread_rwlock_t *rwlock)

 Release (either) lock
pthread_rwlock_unlock(pthread_rwlock_t *rwlock)

 Must be used correctly!
 Up to programmer to decide what requires read access and what 

requires write access



KAIST

18

Reader/Writer Starvation
 Thread 1 has a read lock. Thread 2 is waiting for a write 

lock. Thread 3 tries to take a read lock. What happens?

 Option 1: R2 gets read lock immediately
 Endless stream of overlapping readers → W waits forever

 Option 2: Writer always gets lock as soon as possible
 Endless stream of overlapping writers → readers wait forever

(not shown)

R1

R2

W

?

R1
W

R2

R1
W

R2
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Starvation
 A thread is starved when it makes no forward progress for 

an unacceptably long time
 Unlike deadlock, it’s possible for it to get unstuck eventually
 “Unacceptably long” depends on the application

 Algorithms that guarantee no starvation are called fair
 Fair R/W locks: every waiter receives the lock in first-come first-

served order (several readers can receive the lock at the same time)

 Fairness is more complicated to implement
 Fairness can mean all threads are slower than they would be in an 

unfair system (e.g. “lock convoy problem”)

R1
W

R2
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Thread-Safe APIs
 A function is thread-safe if it always produces correct 

results when called repeatedly from multiple concurrent 
threads.

 Reasons for a function not to be thread-safe:
1. Internal shared state, no locking (e.g. your malloc)
2. Internal state modified across multiple uses (e.g. rand)
3. Returns a pointer to a static variable (e.g. strtok)
4. Calls a function that does any of the above
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Thread-Unsafe Functions (Class 1)

 These functions would be thread-safe if they began with 
pthread_mutex_lock(&l) and ended with 
pthread_mutex_unlock(&l) for some lock L

 Good example: malloc, realloc, free
 Your implementation will crash if called from multiple concurrent 

threads
 The C library’s implementation won’t; it has internal locks

 Locking slows things down, of course
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Thread-Unsafe Functions (Class 2)
 Relying on persistent state across multiple function invocations
 Example: Random number generator that relies on static state

 Difference from class 1: locking would not fix the problem
 2 threads call rand() simultaneously, both get different results than if 

only one made a sequence of calls to rand()

static unsigned int next = 1; 

/* rand: return pseudo-random integer on 0..32767 */ 
int rand(void) {

next = next*1103515245 + 12345; 
return (unsigned int)(next/65536) % 32768; 

} 

/* srand: set seed for rand() */ 
void srand(unsigned int seed) {

next = seed; 
} 
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Fixing Class 2 Thread-Unsafe Functions

 Pass state as part of argument
 and, thereby, eliminate static state 

 Requires API change
 Callers responsible for allocating space for state

/* rand_r - return pseudo-random integer on 0..32767 */ 

int rand_r(int *nextp) 
{ 

*nextp = *nextp*1103515245 + 12345; 
return (unsigned int)(*nextp/65536) % 32768; 

} 
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Thread-Unsafe Functions (Class 3)
 Returning a pointer  to a 

static variable
 Like class 2, locking inside 

function would not help
 Race between use of result

and calls from another thread

 Fix: make caller supply
space for result
 Requires API change

(also like class 2)
 Can be awkward for caller:

how much space is required?

/* Convert integer to string */
char *itoa(int x)
{

static char buf[11];
snprintf(buf, 11, "%d", x);
return buf;

}

/* Convert integer to string
(thread-safe) */

void itoa_r(int x, char *buf,
size_t bufsz)

{
snprintf(buf, bufsz, "%d", x);

}
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Thread-Unsafe Functions (Class 4)
 Calling thread-unsafe functions
 Any function that uses a class 1, 2, or 3 function internally is just as 

thread-unsafe as that function itself
 This applies transitively

 Only fix is to modify the function to use only thread-safe 
functions
 This may or may not involve API changes
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Thread-Safe Library Functions
 Most ISO C library functions are thread-safe
 Examples: malloc, free, printf, scanf
 Exceptions: strtok, rand, asctime, …

 Many older Unix C library functions are unsafe
 There is usually a safe replacement

Thread-unsafe function Class Reentrant version
asctime 3 strftime
ctime 3 strftime
localtime 3 strftime
gethostbyname 3 getaddrinfo
gethostbyaddr 3 getnameinfo
inet_ntoa 3 getnameinfo
rand 2 rand_r*

* The C library’s random number generators are all old 
and not very “strong”. Use a modern CSPRNG instead.
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Reentrant Functions
 Def: A function is reentrant if it accesses no shared 

variables when called by multiple threads. 
 Important subset of thread-safe functions
 Require no synchronization operations
 Only way to make a Class 2 function thread-safe is to make it 

reentrant (e.g., rand_r )

Reentrant
functions

All functions

Thread-unsafe
functions

Thread-safe
functions
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Threads / Signals Interactions

 Many library functions use lock-and-copy for thread safety
 malloc

 Free lists
 fprintf, printf, puts

 So that outputs from multiple threads don’t interleave
 snprintf

 Calls malloc internally for scratch space

 OK to interrupt them with locks held
 … as long as the handler doesn’t use them itself!

Icurr
Inext

Handler

Receive
signal

fprintf.lock()

fprintf.unlock()
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Bad Thread / Signal Interactions

 What if:
 Signal received while library function holds lock
 Handler calls same (or related) library function

 Deadlock!
 Signal handler cannot proceed until it gets lock
 Main program cannot proceed until handler completes

 Key Point
 Threads employ symmetric concurrency
 Signal handling is asymmetric

Icurr
Inext

Handler

Receive
signal

fprintf.lock()

fprintf.unlock()
fprintf.lock()
fprintf.unlock()
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