
EE309 Advanced Programming
Techniques for EE

Lecture 16:
Synchronization (Advanced)

INSU YUN (윤인수)

School of Electrical Engineering, KAIST

[Slides from 15-213: Introduction to Computer Systems at CMU]

KAIST

2

Today
 Deadlock
 Semaphores, Events, and Queues
 Reader-Writer Locks and Starvation
 Thread-Safe API Design

KAIST

3

Deadlock
 A program is deadlocked when

it is waiting for an event which
cannot ever happen
 Mathematical impossibility, not

just practical

 Most common form:
 Thread A is waiting for thread B to

do something
 Thread B is waiting for thread A to

do something
 Neither can make forward progress

KAIST

4

Deadlock caused by wrong locking order
void *thread_1(void *arg) {

pthread_mutex_lock(&mA);
pthread_mutex_lock(&mB);

// do stuff ...

pthread_mutex_unlock(&mA);
pthread_mutex_unlock(&mB);

}

void *thread_2(void *arg) {
pthread_mutex_lock(&mB);
pthread_mutex_lock(&mA);

// do stuff ...

pthread_mutex_unlock(&mB);
pthread_mutex_unlock(&mA);

}

Live coding demo: deadlocks

KAIST

5

Deadlock Visualized in Progress Graph
Any trajectory that enters
the deadlock region will
eventually reach the
deadlock state where each
thread is waiting for the other
to release a lock

Other trajectories luck out and
skirt the deadlock region

Unfortunate fact: trajectory
variations may mean deadlock
bugs are nondeterministic
(don’t always manifest,
making them hard to debug)

Thread 0

Thread 1

L(b) U(b)L(a) U(a)

U(a)

L(a)

L(b)

U(b)
Forbidden region
for b

Forbidden region
for a

Deadlock state:
cannot move
up or right –
both threads
are stuck

Deadlock
region

KAIST

6

Fix this deadlock with consistent ordering
void *thread_1(void *arg) {

pthread_mutex_lock(&mA);
pthread_mutex_lock(&mB);

// do stuff ...

pthread_mutex_unlock(&mA);
pthread_mutex_unlock(&mB);

}

void *thread_2(void *arg) {
pthread_mutex_lock(&mA);
pthread_mutex_lock(&mB);

// do stuff ...

pthread_mutex_unlock(&mB);
pthread_mutex_unlock(&mA);

}
L(a) U(b)L(b) U(a)

U(a)

L(a)

L(b)

U(b)
Forbid-
den
region
for b

Forbidden region
for a

Always possible to move
up or move right

Inconsistent unlock order
does not matter

KAIST

7

Today
 Deadlock
 Semaphores, Events, and Queues
 Reader-Writer Locks and Starvation
 Thread-Safe API Design

KAIST

8

Recall: Semaphores
 Integer value, always >= 0
 P(s) operation (aka sem_wait)
 If s is zero, wait for a V operation to happen.
 Then subtract 1 from s and return.

 V(s) operation (aka sem_post)
 Add 1 to s.
 If there are any threads waiting inside a P operation,

resume one of them

 Any thread may call P; any thread may call V; no ordering
requirements
 Key difference from mutexes

KAIST

11

Queues, Producers, and Consumers

 Common synchronization pattern:
 Producer waits for empty slot, inserts item in queue, and notifies consumer
 Consumer waits for item, removes it from queue, and notifies producer

 Examples
 Multimedia processing:

 Producer creates video frames, consumer renders them
 Event-driven graphical user interfaces

 Producer detects mouse clicks, mouse movements, and keyboard hits
and inserts corresponding events in queue

 Consumer retrieves events from queue and paints the display

producer
thread

shared
queue

consumer
thread

KAIST

12

Producer-Consumer on 1-entry Queue
 Maintain two semaphores: full + empty

empty
buffer

0

full

1

empty

full
buffer

1

full

0

empty

KAIST

13

Why 2 Semaphores for 1-entry Queue?
 Consider multiple producers & multiple consumers

 Producers will contend with each to get empty
 Consumers will contend with each other to get full

shared
queue

P1

Pn





C1

Cm





P(&shared.full);
item = shared.buf;
V(&shared.empty);

Consumers
P(&shared.empty);
shared.buf = item;
V(&shared.full);

Producers
fullempty

KAIST

14

Producer-Consumer on n-element Queue

 Requires a mutex and two counting semaphores:
 mutex: enforces mutually exclusive access to the queue’s innards
 slots: counts the available slots in the queue
 items: counts the available items in the queue

 Makes use of semaphore values > 1 (up to n)

P1

Pn





C1

Cm







Between 0 and n elements

KAIST

15

Today
 Deadlock
 Semaphores, Events, and Queues
 Reader-Writer Locks and Starvation
 Thread-Safe API Design

KAIST

16

Readers-Writers Problem

 Problem statement:
 Reader threads only read the object
 Writer threads modify the object (read/write access)
 Writers must have exclusive access to the object
 Unlimited number of readers can access the object

 Occurs frequently in real systems, e.g.,
 Online airline reservation system
 Multithreaded caching Web proxy

W1

W3

W2

R1

R3

R2

Read/
Write
Access

Read-only
Access

KAIST

17

Pthreads Reader/Writer Lock
 Data type pthread_rwlock_t
 Operations
 Acquire read lock
pthread_rwlock_rdlock(pthread_rwlock_t *rwlock)

 Acquire write lock
pthread_rwlock_wrlock(pthread_rwlock_t *rwlock)

 Release (either) lock
pthread_rwlock_unlock(pthread_rwlock_t *rwlock)

 Must be used correctly!
 Up to programmer to decide what requires read access and what

requires write access

KAIST

18

Reader/Writer Starvation
 Thread 1 has a read lock. Thread 2 is waiting for a write

lock. Thread 3 tries to take a read lock. What happens?

 Option 1: R2 gets read lock immediately
 Endless stream of overlapping readers → W waits forever

 Option 2: Writer always gets lock as soon as possible
 Endless stream of overlapping writers → readers wait forever

(not shown)

R1

R2

W

?

R1
W

R2

R1
W

R2

KAIST

19

Starvation
 A thread is starved when it makes no forward progress for

an unacceptably long time
 Unlike deadlock, it’s possible for it to get unstuck eventually
 “Unacceptably long” depends on the application

 Algorithms that guarantee no starvation are called fair
 Fair R/W locks: every waiter receives the lock in first-come first-

served order (several readers can receive the lock at the same time)

 Fairness is more complicated to implement
 Fairness can mean all threads are slower than they would be in an

unfair system (e.g. “lock convoy problem”)

R1
W

R2

KAIST

21

Today
 Deadlock
 Semaphores, Events, and Queues
 Reader-Writer Locks and Starvation
 Thread-Safe API Design

KAIST

22

Thread-Safe APIs
 A function is thread-safe if it always produces correct

results when called repeatedly from multiple concurrent
threads.

 Reasons for a function not to be thread-safe:
1. Internal shared state, no locking (e.g. your malloc)
2. Internal state modified across multiple uses (e.g. rand)
3. Returns a pointer to a static variable (e.g. strtok)
4. Calls a function that does any of the above

KAIST

23

Thread-Unsafe Functions (Class 1)

 These functions would be thread-safe if they began with
pthread_mutex_lock(&l) and ended with
pthread_mutex_unlock(&l) for some lock L

 Good example: malloc, realloc, free
 Your implementation will crash if called from multiple concurrent

threads
 The C library’s implementation won’t; it has internal locks

 Locking slows things down, of course

KAIST

24

Thread-Unsafe Functions (Class 2)
 Relying on persistent state across multiple function invocations
 Example: Random number generator that relies on static state

 Difference from class 1: locking would not fix the problem
 2 threads call rand() simultaneously, both get different results than if

only one made a sequence of calls to rand()

static unsigned int next = 1;

/* rand: return pseudo-random integer on 0..32767 */
int rand(void) {

next = next*1103515245 + 12345;
return (unsigned int)(next/65536) % 32768;

}

/* srand: set seed for rand() */
void srand(unsigned int seed) {

next = seed;
}

KAIST

25

Fixing Class 2 Thread-Unsafe Functions

 Pass state as part of argument
 and, thereby, eliminate static state

 Requires API change
 Callers responsible for allocating space for state

/* rand_r - return pseudo-random integer on 0..32767 */

int rand_r(int *nextp)
{

*nextp = *nextp*1103515245 + 12345;
return (unsigned int)(*nextp/65536) % 32768;

}

KAIST

26

Thread-Unsafe Functions (Class 3)
 Returning a pointer to a

static variable
 Like class 2, locking inside

function would not help
 Race between use of result

and calls from another thread

 Fix: make caller supply
space for result
 Requires API change

(also like class 2)
 Can be awkward for caller:

how much space is required?

/* Convert integer to string */
char *itoa(int x)
{

static char buf[11];
snprintf(buf, 11, "%d", x);
return buf;

}

/* Convert integer to string
(thread-safe) */

void itoa_r(int x, char *buf,
size_t bufsz)

{
snprintf(buf, bufsz, "%d", x);

}

KAIST

27

Thread-Unsafe Functions (Class 4)
 Calling thread-unsafe functions
 Any function that uses a class 1, 2, or 3 function internally is just as

thread-unsafe as that function itself
 This applies transitively

 Only fix is to modify the function to use only thread-safe
functions
 This may or may not involve API changes

KAIST

28

Thread-Safe Library Functions
 Most ISO C library functions are thread-safe
 Examples: malloc, free, printf, scanf
 Exceptions: strtok, rand, asctime, …

 Many older Unix C library functions are unsafe
 There is usually a safe replacement

Thread-unsafe function Class Reentrant version
asctime 3 strftime
ctime 3 strftime
localtime 3 strftime
gethostbyname 3 getaddrinfo
gethostbyaddr 3 getnameinfo
inet_ntoa 3 getnameinfo
rand 2 rand_r*

* The C library’s random number generators are all old
and not very “strong”. Use a modern CSPRNG instead.

KAIST

29

Reentrant Functions
 Def: A function is reentrant if it accesses no shared

variables when called by multiple threads.
 Important subset of thread-safe functions
 Require no synchronization operations
 Only way to make a Class 2 function thread-safe is to make it

reentrant (e.g., rand_r)

Reentrant
functions

All functions

Thread-unsafe
functions

Thread-safe
functions

KAIST

30

Threads / Signals Interactions

 Many library functions use lock-and-copy for thread safety
 malloc

 Free lists
 fprintf, printf, puts

 So that outputs from multiple threads don’t interleave
 snprintf

 Calls malloc internally for scratch space

 OK to interrupt them with locks held
 … as long as the handler doesn’t use them itself!

Icurr
Inext

Handler

Receive
signal

fprintf.lock()

fprintf.unlock()

KAIST

31

Bad Thread / Signal Interactions

 What if:
 Signal received while library function holds lock
 Handler calls same (or related) library function

 Deadlock!
 Signal handler cannot proceed until it gets lock
 Main program cannot proceed until handler completes

 Key Point
 Threads employ symmetric concurrency
 Signal handling is asymmetric

Icurr
Inext

Handler

Receive
signal

fprintf.lock()

fprintf.unlock()
fprintf.lock()
fprintf.unlock()

	EE309 Advanced Programming Techniques for EE��Lecture 16: �Synchronization (Advanced)
	Today
	Deadlock
	Deadlock caused by wrong locking order
	Deadlock Visualized in Progress Graph
	Fix this deadlock with consistent ordering
	Today
	Recall: Semaphores
	Queues, Producers, and Consumers
	Producer-Consumer on 1-entry Queue
	Why 2 Semaphores for 1-entry Queue?
	Producer-Consumer on n-element Queue
	Today
	Readers-Writers Problem
	Pthreads Reader/Writer Lock
	Reader/Writer Starvation
	Starvation
	Today
	Thread-Safe APIs
	Thread-Unsafe Functions (Class 1)
	Thread-Unsafe Functions (Class 2)
	Fixing Class 2 Thread-Unsafe Functions
	Thread-Unsafe Functions (Class 3)
	Thread-Unsafe Functions (Class 4)
	Thread-Safe Library Functions
	Reentrant Functions	
	Threads / Signals Interactions
	Bad Thread / Signal Interactions

