/O I\/\ulUpIexmg

Approaches for Writing Concurrent Servers

Allow server to handle multiple clients concurrently

1. Process-based

* Kernel automatically interleaves multiple logical flows
* Each flow has its own private address space

2. Event-based
e Programmer manually interleaves multiple logical flows
* All flows share the same address space
» Uses technique called I/0 multiplexing

3. Thread-based

* Kernel automatically interleaves multiple logical flows
* Each flow shares the same address space
e Hybrid of of process-based and event-based

Motivation

* The server must respond to two independent I/O requests
(1) A network client making a connection request
(2) A user typing a command line at the keyboard

 Which event do we wait for first?
* Neither option is ideal!

* One solution to this dilemma is I/O multiplexing

Overview

* Use the select function to ask the kernel to suspend process,
returning control to the application only after one or more 1/O events
have occurred

* Example:
* Return when any descriptor in the set {0, 4} is ready for reading
* Return when any descriptor in the set {1, 2, 7} is ready for writing.
e Time out if 152.13 seconds have elapsed waiting for an 1/O event to occur

select

#include <sys/select.h>

int select(int nfds, fd set *readfds, fd set *writefds,
fd set *exceptfds, struct timeval *timeout);

void FD CLR(int fd, fd set *set); /* Clear all bits 1in fdset */
int FD ISSET (int fd, fd set *set); /* Clear bit fd in fdset */
void FD SET (int fd, fd set *set); /* Turn on bit fd in fdset */

void FD ZERO (fd set *set); /* Is bit fd is fdset on */

More on select

* select function manipulates set of type £d set, which are known
as descriptor sets.

e A descriptor set: a bit vector of size n
b,_1by,_> ...b1bg

 Each bit by, corresponds to a descriptor k

More on select

e The select function takes five inputs:

(1) n: A cardinality of descriptor sets

(2) readset: A descriptor set for checking readable
(3) writeset: A descriptor set for checking writable
(4)

4) exceptset: A descriptor set for checking exception conditions
- Arrival of out-of-band data for a socket

- The presence of control status information to be read from the master side of a pseudo
terminal

(5) Timeout

select function Descriptor Arguments

* Array of integers : each bit in each integer correspond to a descriptor
(fd_set)

* 4 macros
e void FD_ZERO(fd_set *fdset); /* clear all bits in fdset */
e void FD SET(int fd, fd_set *fdset); /* turn on the bit for fd in fdset */
e void FD CLR(int fd, fd_set *fdset); /* turn off the bit for fd in fdset*/
e int FD ISSET(int fd, fd_set *fdset);/* is the bit for fd on in fdset ? */

nfds argument to select function

* Specifies the number of descriptors to be tested.

* [ts value is the maximum descriptor to be tested, plus one. (hence

maxfd + 1)
e Descriptors O, 1, 2, up through and including nfds-1 are tested

 Example: interested in fds 1,2, and 5 -> maxfdpl =6
* Your code has to calculate the maxfdp1 value

e Constant FD_SETSIZE defined by including <sys/select.h>
* is the number of descriptors in the fd_set datatype. (often = 1024)

Example

fd set readset, writeset;
FD ZERO (&readset) ;
FD ZERO (&writeset) ;

FD SET (0, &readset);
FD SET (3, &readset);
FD SET (1, &writeset);
FD SET (2, &writeset);
select (4, &readset, &writeset, NULL, NULL);
fd0 fd1 fd2 fd3
readset: 1 0 0 1
——m=none of these bits are looked at
writeset: 0 1 1 0

A

maxfdpl = 4

Figure 14.16 Example descriptor sets for select

Condition for a socket to be ready for select

Pending error

Condition Readable? | Writable? | Exception?
Data to read . I l
Read half of the connection closed .
New connection ready for listening socket .
Space available for writing
Write half of the connection closed
- L

TCP out-of-band data

More on select

* Three possible return values from select

* A return value of -1 means that an error occurred.
* None of the descriptor sets will be modified
* Areturn value of 0 means that no descriptors are ready.
* All the descriptor sets will be zeroed out
* A positive return value specifies the number of descriptors that are ready.

* The only bits left on in the three descriptor sets are the bits corresponding to the
descriptors that are ready

e Use FD_ISSET macro to determine which descriptors are ready for reading

A logical flow in a event-driven server

Transition:
"read a text line from

! escriptor d, "
State:

"waiting for descriptor d, to
be ready for reading”

Input event:
"descriptor d,
is ready for reading"

TCP echo server using select 1/5

» Rewrite the server as a single process that uses select to handle any number of
clients, instead of forking one child per client.

e Before first client has established a connection

Client[] fdo fd1 fd2 fd3
o oo o] v]]
[1]
Maxfd +1 =4

2]

fd:0O(stdin), 1(stdout), 2(stderr)
fd:3 - listening socket fd

[FD_SETSIZE -1]

TCP echo server using select 2/5

 After first client connection is established (assuming connected
descriptor returned by accept is 4)

[FD_SETSIZE -1]

Client[] fdo fdl fd2 fd3 fd4
° wolofo o [o] |
[1]
Maxfd + 1 =5

[2]

fd:0(stdin), 1(stdout), 2(stderr)
fd:3 = listening socket fd
fd:4 - first connected fd

TCP echo server using select 3/5

» After second client connection is established (assuming connected
descriptor returned by accept is 5)

Client[] fdo fdl fd2 fd3 fd4 fds
[1]
Maxfd+1=6

2]

fd:0O(stdin), 1(stdout), 2(stderr)
fd:3 = listening socket fd

fd:4 - first connected socket fd
fd:5-> second connected socket fd

[FD_SETSIZE -1]

TCP echo server using select 4/5

e First client terminates its connection (fd 4 readable and read returns O
-> the client sends EOF)

Client(] fdo fdl fd2 fd3 fd4 fd5
o s oo [o]+ Jofe |
[1]
Maxfd +1 =6

[2]

fd:0(stdin), 1(stdout), 2(stderr)
fd:3 = listening socket fd
fd:5-> second connected socket fd

[FD_SETSIZE -1]

TCP echo server using select 5/5

* As clients arrive, record connected socket descriptor in first available
entry in client array (first entry = -1)

* Add connected socket to read descriptor set

* Keep track of

* Highest index in client array that is currently in use
* maxfd +1

* The limit on number of clients to be served
 Min (
FD_SETSIZE,
Max (Number of descriptors allowed for this process by the kernel))

#include "csapp.h"

typedef struct { /* Represents a pool of connected descriptors */

int maxfd; /*
fd set read set; /*
fd set ready set; /*
int nready; / *
int maxi; /%

Largest descriptor in read set */

Set of all active descriptors */

Subset of descriptors ready for reading */
Number of ready descriptors from select */
Highwater index into client array */

int clientfd[FD SETSIZE]; /* Set of active descriptors */
rio t clientrio[FD SETSIZE]; /* Set of active read buffers */

} pool;

int byte cnt = 0; /* Counts total bytes received by server */

int main(int argc, char **argv)
{
int listenfd, connfd;
socklen t clientlen;
struct sockaddr storage clientaddr;
static pool pool;

if (argc !'= 2) {
fprintf (stderr, "usage: %$s <port>\n", argv([0]);
exit (0);

}
listenfd = Open listenfd(argv[1l]);
init pool(listenfd, é&pool);

while (1) {
/* Wait for listening/connected descriptor(s) to become ready */
pool.ready set = pool.read set;
pool.nready = Select (pool.maxfd+1l, &pool.ready set, NULL, NULL, NULL);

/* If listening descriptor ready, add new client to pool */
if (FD ISSET (listenfd, &pool.ready set)) {
clientlen = sizeof (struct sockaddr_storage) ;
connfd = Accept(listenfd, (SA *)é&clientaddr, &clientlen);
add client (connfd, &pool);
}

/* Echo a text line from each ready connected descriptor */
check clients (&pool);

vold 1init pool (int listenfd, pool *p)
{

/* Initially, there are no connected descriptors */

int 1i;

p->maxi = —-1;

for (i=0; i< FD SETSIZE; 1++)
p->clientfd[i] = -1;

/* Initially, listenfd is only member of select read set */
p->maxfd = listenfd;

FD ZERO (&p->read set);

FD SET (listenfd, &p->read set);

volid add client (int connfd, pool *p)
{
int 1i;
p->nready——;
for (1 = 0; 1 < FD SETSIZE; 1i++) /* Find an available slot
if (p->clientfd[i] < 0) {
/* Add connected descriptor to the pool */
p->clientfd[i] = connfd;
Rio readinitb (&p->clientrio[i], connfd);

/* Add the descriptor to descriptor set */
FD SET (connfd, &p->read set);

/* Update max descriptor and pool highwater mark */
if (connfd > p->maxfd)
p->maxfd = connfd;
if (1 > p->maxi)
p->maxi = 1i;
break;
}
if (i == FD SETSIZE) /* Couldn't find an empty slot */
app_error ("add client error: Too many clients");

*/

vold check clients (pool *p)

{
int i, connfd, n;
char buf [MAXLINE];
rio t rio;

for (i = 0; (1 <= p->maxi) && (p->nready > 0); i++) {
connfd = p->clientfdl[i];

rio = p->clientrio[1i];

/* If the descriptor is ready, echo a text line from it */

if ((connfd > 0) && (FD ISSET (connfd, &p->ready set))) |
p->nready—--—;
if ((n = Rio readlineb(&rio, buf, MAXLINE)) != 0) {

byte cnt += n;

printf ("Server received %d (%d total) bytes on fd %d\n",
n, byte cnt, connfd);

Rio writen (connfd, buf, n);

}

/* EOF detected, remove descriptor from pool */
else {

Close (connfd) ;

FD CLR (connfd, &p->read set);

p->clientfd[i] = -1;

Unfortunately, this server is not stable!

* read() can be blocked!

Under Linux, select() may report a socket file descriptor as "ready for reading”, while nevertheless a
subsequent read blocks. This could for example happen when data has arrived but upon examination has
wrong checksum and is discarded. There may be other circumstances in which a file descriptor is spuriously
reported as ready. Thus it may be safer to use O_NONBLOCK on sockets that should not block.

e accept() can be blocked, too!

There may not always be a connection waiting after a SIGIO is delivered or select(2) or poll{2) return a
readability event because the connection might have been removed by an asynchronous network error or
another thread before accept() is called. If this happens then the call will block waiting for the next

connection to arrive. To ensure that accept() never blocks, the passed socket sockfd needs to have the
O_NONBLOCK flag set (see socket(7)).

Non-blocking 1/0

application kernel
application kermnel - po——
. all N recvirom -— no datagram ready
recvirom ¥ & nodatagram ready - EWCULDBLOCK
tem call
racvirom MyEme = nodatagram ready
e EHCULDBLOCK » wait for data
»wait for data . svstem call .
N recv rom = nodatagram ready
process repeatedy - EWCULDBLOCK
process blocks in ¢ alls recvirom, | vetem call
call to ecvirom datagram ready waiting for an OK recvirom = datagram ready
- return | polling)
copy datagram copy datagram
 copy data from copy dala from
kemnel to user kemel to user
retum Ok
-l copy mmph‘ﬂ retum OK .
~ process o - Copy complete
data prrosess
AR
datagram

Blocking I/O Non-blocking 1/0

Reminder: fentl()

* The fcntl function is used for five different purposes:

Duplicate an existing descriptor (cmd = F_DUPFD or F_DUPFD_CLOEXEC)
Get/set file descriptor flags (cmd = F_GETFD or F_SETFD)

Get/set file status flags (cmd =F _GETFL or F_SETFL)

Get/set asynchronous I/O ownership (cmd = F_GETOWN or F_SETOWN)
Get/set record locks (cmd = F_GETLK, F_SETLK, or F_SETLKW)

#include <fcntl.h>

int fcntl(int fd, int cmd, ... /% int arg x/);

Make socket non-
blocking with fcntl

—-—- echoservers.c
+++ echoserver-non-block.c
Q@ -33,6 +33,7 Q@
exit (0) ;
}
listenfd = Open listenfd(argv[1l]);
+ Fentl (listenfd, F _SETFD, O NONBLOCK) ;
init pool (listenfd, &pool);

while (1) {
Q@ -44,6 +45,7 @@
if (FD _ISSET (listenfd, &pool.ready set)) {
clientlen = sizeof (struct sockaddr storage);
connfd = Accept(listenfd, (SA *)&clientaddr,
+ Fcentl (connfd, F _SETFD, O NONBLOCK) ;
add client (connfd, é&pool);

&clientlen) ;

--- csapp.cC
+++ csapp-non-blocking.c
@@ -582,8 +582,10 @@

{

int rc;

- if ((rc = accept(s, addr, addrlen)) < 0)
+ if ((rc = accept(s, addr, addrlen)) < 0) {
+ if (errno != EWOULDBLOCK)

unix error ("Accept error");

+ }
return rc;
Q@ -754,7 +756,7 @@

while (nleft > 0) {
if ((nread = read(fd, bufp, nleft)) < 0) {

if (errno == EINTR) /* Interrupted by sig ha
ndler return */
+ if (errno == EINTR || errno == EWOULDBLOCK)
/* Interrupted by sig handler return */

nread = 0; /* and call read() agail

n */
else
return -

1; /* errno set by read() */

Issues with select

e select() can monitor only file descriptors numbers that are less than
FD SETSIZE (1024)

* The implementation of the fd_set arguments as value-result
* i.e., Need to keep track the original fd_set for the next call

* O(n) for checking which file descriptor is ready for a certain event

epoll

* Linux has a scalable I/O event notification mechanism called epoll that
can monitor a set of file descriptors to see whether there is any 1/0
ready for them. There are three system calls, as described below, that
form the api for epoll.

epoll createl

int epoll createl (int flags);

* This function creates an epoll object and returns a file descriptor. The
only valid flag is EPOLL_CLOEXEC, which closes the descriptor on exec
as you might expect

epoll wait

int epoll wait(int epfd, struct epoll event *events, int maxevents, 1int timeout);

* This function waits for any of the events being monitored, until there is
a timeout. It returns up to maxevents at once and populates the
events array with each event that has occurred.

epoll ctl

int epoll ctl(int epfd, int op, int fd, struct epoll event *event);

* This function configures which descriptors are watched by the object,
and op can be EPOLL_CTL_ADD, EPOLL_CTL_MOD, or EPOLL_CTL_DEL.
We will investigate struct epoll _event on the next slide.

epoll event

* The struct epoll_event is defined as follows:

b

struct epoll event ({
uint32 t events;
epoll data t data;

/* Epoll events */
/* User data variable */

e epoll data tis

a typedef'd union, defined as follows:

typedef union epoll data ({
void *ptr;

int fd;

uint32 t u32;

uinto4 t uo4;

} epoll data t;

epoll event

* The events member is a bit mask, and for our purposes, we care about
three values:

 EPOLLIN : the file is available for reading
 EPOLLOUT : the file is available for writing

 EPOLLET : This sets the file descriptor to be "edge triggered", meaning that
events are delivered when there is a change on the descriptor (e.g., there is
data to be read).

More on edge-triggered

(1) The file descriptor that represents the read side of a pipe (rfd) is
registered on the epoll instance.

(2) A pipe writer writes 2 kB of data on the write side of the pipe.

(3) A call to epoll wait(2) is done that will return rfd as a ready file descriptor.
(4) The pipe reader reads 1 kB of data from rfd

(5) A call to epoll wait(2) is done.

- epoll with EPOLLET: hang
- epoll without EPOLLET: will return

epoll echoserver.c

* https://gist.github.com/insuyun/bc6b480f26f50c181a702cd90de558a7

if ((epfd = epoll createl(0)) < 0) {
die("epoll createl");

}

listener = setup socket();

memset (&ev, 0, sizeof ev);

ev.events = EPOLLIN;

ev.data.fd = listener;

epoll ctl (epfd, EPOLL CTL ADD, listener, &ev);

https://gist.github.com/insuyun/bc6b480f26f50c181a702cd90de558a7

for

(;7) Ao

int 1i;
int nfd = epoll wait (epfd, events, MAX EVENTS,
for (1 = 0; 1 < nfd; i++) {

if (events[i].data.fd == listener)

struct sockaddr in client addr;
socklen t client addr len

int client accept (listener,

(struct sockaddr *)

if (client < 0) {
1f (errno != EWOULDBLOCK)
perror ("accept") ;
continue;

setnonblocking(client);

memset (&ev, 0, sizeof ev);
ev.events = EPOLLIN | EPOLLET;
ev.data.fd = client;

epoll ctl(epfd, EPOLL CTL ADD,

&client addr,

-1)7

{

sizeof client addr;

&client addr len);

client, é&ev);

} else {
int client = events[i].data.fd;
int n = read(client, buffer, sizeof buffer);
if (n < 0) {
if (errno != EWOULDBLOCK) {
epoll ctl (epfd, EPOLL CTL DEL, client, &ev);
close(client) ;
}
} else if (n == 0) {
epoll ctl(epfd, EPOLL CTL DEL, client, &ev);
close(client);
} else {
write (client, buffer, n);

	I/O Multiplexing
	Approaches for Writing Concurrent Servers
	Motivation
	Overview
	select
	More on select
	More on select
	select function Descriptor Arguments
	nfds argument to select function
	Example
	Condition for a socket to be ready for select
	More on select
	A logical flow in a event-driven server
	TCP echo server using select 1/5
	TCP echo server using select 2/5
	TCP echo server using select 3/5
	TCP echo server using select 4/5
	TCP echo server using select 5/5
	슬라이드 번호 19
	슬라이드 번호 20
	슬라이드 번호 21
	슬라이드 번호 22
	슬라이드 번호 23
	Unfortunately, this server is not stable!
	Non-blocking I/O
	Reminder: fcntl()
	Make socket non-blocking with fcntl
	Issues with select
	epoll
	epoll_create1
	epoll_wait
	epoll_ctl
	epoll_event
	epoll_event
	More on edge-triggered
	epoll_echoserver.c
	epoll_echoserver.c
	슬라이드 번호 38

