
EE309 Assignment 1
Directory listing - Simplified ls (ls309)

Overview

Overview

● ls (list)
○ Display files & directories in a specified location
○ Providing options for display targets / format

■ Hidden files
■ More informations
■ Subdirectories recursion
■ …

● Goal: Implementing your own simplified ls (ls309)

Getting started

● Download skeleton code into your system (ex. Haedong lounge server)
○ https://teemo.kaist.ac.kr/ee309/2023/assignments/assignment1/ee309_assign1.tar.gz

https://teemo.kaist.ac.kr/ee309/2023/assignments/assignment1/ee309_assign1.tar.gz

Getting started

● Compile skeleton code

Getting started

● Run test script with sample test cases

Specifications

● Inputs
○ Take the (absolute/relative) paths to the file or directory from command-line arguments

■ $./ls309 /home/user/some_abs_path
■ $./ls309 ./some_rel_path
■ $./ls309 ./file1 ./file2 ./file2
■ $./ls309 ./some_file1 ./some_dir/ ./some_file2

○ Support an empty argument -> use the current directory
■ $./ls309 should give same result with $./ls309 .

○ Support three options: -a, -l, and -R
■ $./ls309 -a
■ $./ls309 -a -l
■ $./ls309 -aR
■ $./ls309 -alR

○ the option strings can be located in any position
■ $./ls309 -alR ./file
■ $./ls309 ./file -alR
■ $./ls309 ./file1 -a ./file2 -lR

Specifications

● Outputs
○ Print a list separated by newline("\n") into standard output
○ Should be sorted in lexicographical order based on ASCII character set

■ Different behavior from coreutils ls

Specifications

● Outputs
○ If multiple display targets are given

■ List the files from targets
■ List the directories with their name and entries.

● Lists should be separated by newline("\n")
● Each list and order of directories should be sorted as well.

Specifications

● Options
○ -a option: Display hidden files and directories (start with .)

Specifications

● Options
○ -l option: Display additional information

Specifications

● Options
○ -R option: Display directories recursively

Specifications

● Etc
○ Properly handle errors and print textual error messages

■ ex. No such file or directory
○ Should be robust from any kind of input

■ i.e. Should not crash unintendedly
■ Will get 0 points for test case in which unexpected crashes happen

○ Should not have any kind of memory leak.
■ i.e. Should free every memory which returned from malloc

Implementation

● Option parsing & Entries sorting
○ Finish implementation of option parsing routine of main function
○ Finish implementation of sort_dnode_entries function

■ You may want to use compare_dnode_name helper function

Implementation

● Directory listing and Support -a option
○ Implement parse_dir function

■ You may need to use…
● Directory-related library functions (opendir, readdir, closedir)
● Other helper functions (concat_path, strdup)

○ Support -a option into your implementation of parse_dir function.

Implementation

● Support -l option
○ Finish implementation of parse_dnode function.

■ Need to follow or not follow the link based on follow_link parameter
■ You may need to use library functions for file information(stat, fstat, lstat)

Implementation

● Support -l option
○ Finish implementation of display_dnode_long function

■ You may want to use readlink function to get link target.

Implementation

● Support -R option
○ Finish implementation of print_dir function

Implementation

● Error handling & Robustness
○ For error handling…

■ Always check the return values of library functions
■ Print the proper error message into standard error
■ You may want to use the errno variable and perror / strerror functions

○ For the robustness…
■ Always be aware of memory-related bugs
■ You may use Valgrind or Address Sanitizer to check

https://valgrind.org/
https://github.com/google/sanitizers/wiki/AddressSanitizer

Submission

● Submit your code as tar.gz archive file
○ Use KAIST KLMS to submit your project.
○ File name: <YourStudentID>_assign1.tar.gz
○ Make sure to run make clean before submitting.

Criteria

● Will test codes on ubuntu 20.04.6 LTS (same with Haedong lounge server)
○ Only provide subset of all test cases as sample

Test categories Weight

test-basic 20%

test-a 10%

test-l 15%

test-R 15%

test-advanced 30%

test-error 10%

Notes

● Linux man page always helpful
○ ex. man getopt

● Study general guideline and course policy carefully
○ Ethics document, Collaboration Policy…

● Feel free to ask questions on Piazza

https://man7.org/linux/man-pages/man3/getopt.3.html
https://teemo.kaist.ac.kr/ee309/2023/assignments/
https://teemo.kaist.ac.kr/ee309/2023/policy/
https://piazza.com/class/lk99k8zw5g43aa

Thank you
Any questions?

	EE309 Assignment 1
	Overview
	Overview
	Getting started
	Getting started
	Getting started
	Specifications
	Specifications
	Specifications
	Specifications
	Specifications
	Specifications
	Specifications
	Implementation
	Implementation
	Implementation
	Implementation
	Implementation
	Implementation
	Submission
	Criteria
	Notes
	Thank you

