
Miscellaneous Topics

Insu Yun

So far we learned

Command injection
PATH injection
(Stack) buffer overflow
Format string bug
A very small part of vulnerabilities

Common Weakness Enumeration (CWE)

So�ware:
458 CWEs!

https://cwe.mitre.org/data/definitions/699.html

https://cwe.mitre.org/data/definitions/699.html

So far we learned (CWE)

Command injection
CWE-78: Improper Neutralization of Special Elements used
in an OS Command ('OS Command Injection')

PATH injection
CWE-426: Untrusted Search Path

(Stack) buffer overflow
CWE-121: Stack-based buffer overflow

Format string bug
CWE-134: Use of Externally-Controlled Format String

CWE-457: Use of Uninitialized Variable

The code uses a variable that has not been initialized, leading to
unpredictable or unintended results.

CWE-457: Use of Uninitialized Variable

char *test_string;
if (i != err_val)
{
 test_string = "Hello World!";
}
printf("%s", test_string);

CWE-367: Time-of-check Time-of-use (TOCTOU) Race Condition

The so�ware checks the state of a resource before using that
resource, but the resource's state can change between the check
and the use in a way that invalidates the results of the check. This
can cause the so�ware to perform invalid actions when the
resource is in an unexpected state.

CWE-363: Race Condition Enabling Link Following

The so�ware checks the status of a file or directory before accessing
it, which produces a race condition in which the file can be replaced
with a link before the access is performed, causing the so�ware to
access the wrong file.

CWE-363: Race Condition Enabling Link Following

// assume that it is running by $admin
function readFile($filename){
 $user = getCurrentUser();

 //resolve file if its a symbolic link
 if(is_link($filename)){
 $filename = readlink($filename);
 }

 if(fileowner($filename) == $user){
 echo file_get_contents($realFile);
 return;
 }
 else{
 echo 'Access denied';
 return false;
 }
}

CWE-363: Race Condition Enabling Link Following

Exploitation
Process1

Create a empty file of $user
Delete it
Make a symbolic link for $admin

Process2
Keep running the program

CWE-502: Deserialization of Untrusted Data

The application deserializes untrusted data without sufficiently
verifying that the resulting data will be valid.

CWE-502: Deserialization of Untrusted Data

class ExampleProtocol(protocol.Protocol):
 def dataReceived(self, data):
 # Code that would be here would parse the incoming data
 # After receiving headers, call confirmAuth() to
authenticate

 def confirmAuth(self, headers):
 try:
 token =
cPickle.loads(base64.b64decode(headers['AuthToken']))
 if not check_hmac(token['signature'], token['data'],
getSecretKey()):
 raise AuthFail
 self.secure_data = token['data']
 except:
 raise AuthFail

CWE-502: Deserialization of Untrusted Data

Python allows to define how to unpickle objects using __reduce__
i.e., arbitrary code execution

Exploitation

Similar things also happen in Java, Ruby, others
How to prevent?

 import cPickle
 import subprocess
 import base64

 class RunBinSh(object):
 def __reduce__(self):
 return (subprocess.Popen, (('/bin/sh',),))

 print base64.b64encode(cPickle.dumps(RunBinSh()))

CWE-195: Signed to Unsigned Conversion Error

The so�ware uses a signed primitive and performs a cast to an
unsigned primitive, which can produce an unexpected value if the
value of the signed primitive can not be represented using an
unsigned primitive.

CWE-195: Signed to Unsigned Conversion Error

 DataPacket *packet;
 int numHeaders;
 PacketHeader *headers;

 sock=AcceptSocketConnection();
 ReadPacket(packet, sock);
 numHeaders = packet->headers;

 if (numHeaders > 100) {
 ExitError("too many headers!");
 }
 headers = malloc(numHeaders * sizeof(PacketHeader);
 ParsePacketHeaders(packet, headers);

CWE-758: Reliance on Undefined, Unspecified, or
Implementation-Defined Behavior

The so�ware uses an API function, data structure, or other entity in
a way that relies on properties that are not always guaranteed to
hold for that entity.

CWE-758: Reliance on Undefined, Unspecified, or
Implementation-Defined Behavior

char *buf = ...;
char *buf_end = ...;
unsigned int len = ...;
if (buf + len >= buf_end)
 return; /* len too large */
if (buf + len < buf)
 return; /* overflow, buf+len wrapped around */
/* write to buf[0..len-1] */

CWE-758: Reliance on Undefined, Unspecified, or
Implementation-Defined Behavior

class A {
 public:
 void read(int x) {
 int *addr = internalRead(x);
 printf("0x%x\n", *addr);
 }

 private:
 int* internalRead(int x) {
 if (x < 0 || x >= 100){ return nullptr;}
 return array+x;
 }
 int flag = 0xdeadbeef;
 int array[100] = {0};
 };

int main() {
 A a;
 a.read(-1);
 return 1;
}

CWE-758: Reliance on Undefined, Unspecified, or
Implementation-Defined Behavior

$ clang++ -o demo demo.cpp
$./demo
Segmentation fault (core dumped)

$ clang++ -O3 -o demo demo.cpp
$./demo
0xdeadbeef

CWE-252: Unchecked Return Value

The so�ware does not check the return value from a method or
function, which can prevent it from detecting unexpected states
and conditions.

CWE-252: Unchecked Return Value

char buf[10], cp_buf[10];
fgets(buf, 10, stdin);
strcpy(cp_buf, buf);

CWE-843: Access of Resource Using Incompatible Type ('Type
Confusion')

The program allocates or initializes a resource such as a pointer,
object, or variable using one type, but it later accesses that resource
using a type that is incompatible with the original type.

CWE-843: Access of Resource Using Incompatible Type ('Type
Confusion')

class Parent {
 int p_data;
 virtual void print (void) {};
}

class Child : pulbic Parent {
 int c_data;
 void print(void) override {};
}

Parent *Pptr = new Parent;
Child *Cptr = static_cast<Child>(Pptr);
Cptr->c_data = 0x12345678;

CWE-840: Business Logic Errors

Business logic vulnerabilities are flaws in the design and
implementation of an application that allow an attacker to elicit
unintended behavior.

CWE-840: Business Logic Errors

This is a real vulnerability in MacOS :)

int pid = client->pid;
if (security_check(action, pid)) {
 perform_action(client);
}

Heap-related CWEs

CWE-122: Heap-based Buffer Overflow
CWE-416: Use A�er Free
CWE-415: Double Free
CWE-763: Release of Invalid Pointer or Reference

Other vulnerabilities

Web
Cryptography
Smart contract
Machine learning

Reference

- https://i.blackhat.com/eu-20/Wednesday/eu-20-Wu-Finding-Bugs-
Compiler-Knows-But-Does-Not-Tell-You-Dissecting-Undefined-
Behavior-Optimizations-In-LLVM.pdf

https://cwe.mitre.org/
https://portswigger.net/web-security/logic-flaws
https://saelo.github.io/presentations/warcon18_dont_trust_the_pid.pd

https://i.blackhat.com/eu-20/Wednesday/eu-20-Wu-Finding-Bugs-Compiler-Knows-But-Does-Not-Tell-You-Dissecting-Undefined-Behavior-Optimizations-In-LLVM.pdf
https://cwe.mitre.org/
https://portswigger.net/web-security/logic-flaws
https://saelo.github.io/presentations/warcon18_dont_trust_the_pid.pdf

