
Linux Fundamentals
Insu Yun

Announcements

• Office hour: Mon 4 - 5pm (Junyoung), Thu 4-5pm (Me)
• Please join our discord!

• No class on Wednesday (Presidential election)
• Deadline for lab1: Mar 16 (Next Wednesday)

Today’s lecture

• Linux

• File system
• Permission
• File-related system calls
• File descriptors

• Process and thread
• Shell

What is Linux?

• Unix-like operating system

• Developed by Linus Torvalds

• Many distributions exist
• Centos
• Redhat
• Ubuntu 18.04 <- Our server
• …

An operating system is software that provides

• Resource management

• Security

• Hardware abstraction

• User interface

• …

Linux file system

• A tree-based model that stores files and directories

• Can check a list of files in the current directory using ls command

Linux file system

• “.” is a current directory
• “..”is a parent directory

• You can get more information by typing ls -al

Linux file permission

• r: read, w: write,x: executable
• Permissions are often expressed with the octal number (i.e., base 8)

• r = 4, w = 2, x = 1
• e.g., rwxr-xr-x: 755
• e.g., rwxrwxrwx: 777

Owner

Group
Other

File type
(e.g., directory)

File
Owner

File
Group

Q: What does this
number mean?

Special permission: setuid, setgid

• rwxr-sr-x: setgid program
• e.g., rwsr-xr-x: setuid program

• setgid program changes ‘effective’ gid of its user with its gid
• Similar to rwx, special permissions have the octal number form

• setuid: 4, setgid: 2, sticky bit: 1
• The above permission would be 2755

Q: Why we use
setgid? not setuid?

Questions about permissions

• uid (user id): An identifier that specifies a current user
• gid (group id): An identifier that specifies a current group

Q: Can I read this?

O

Questions about permissions

Q: Can I read this?

Q: Can I read this?

O

O

Questions about permissions

Q: Can I read this?

X

Questions about permissions

• Let’s assume we have a program that reads a file

• Q: Can I read this?

X

Questions about permissions

• Can I read this?

X

Questions about permissions

• Can I read this?

• Now I can read it!

More on setgid
#include <unistd.h>
#include <sys/types.h>
#include <stdio.h>
#include <stdlib.h>

int main() {
// get permissions directly
printf("uid=%d, gid=%d, euid=%d, egid=%d\n",
getuid(), getgid(), geteuid(), getegid());

// run 'id' using execve system call
if (!fork())
execl("/usr/bin/id", "/usr/bin/id", NULL);

// run 'id' through shell
system(”/usr/bin/id");

}
system() = fork()

+ /bin/sh –c “COMMAND”

• Due to security reasons, shell (e.g., sh or bash) drops effective uid/gid

• In our challenges, you will see setregid(getegid(), getegid());
• It allows you to invoke shell with higher privilege
• As a result, it will make you easy to exploit

(otherwise, you have to call those functions by yourself)

When we run setgid program…

A special file type: symbolic (soft) link

• A special file that points another file
• e.g., .lnk file in Windows

• You can create it using ln command
• e.g., ln –s [src] [dst]

• Interesting property regarding security: You can create symbolic link
even you don’t have enough permission for source

• e.g., You can make symbolic link for a file even you cannot read the file, or the
file has setuid permission

Q: Without –s, you can create hard link.
What’s difference compared to soft link
or to copy of a file?

Use a file system using open(), read(), write(), …

• Linux (and other operating systems) can use its hardware resource
including files, using system calls

• int open(const char *pathname, int flags)
• Opens a file specified the pathname and returns a file descriptor

• ssize_t read(int fd, void *buf, size_t count)
• Read up to count bytes from file descriptor fd into buf

• ssize_t write(int fd, const void *buf, size_t count)
• Write up to count bytes to file descriptor fd from buf

• int close(int fd): close a given file descriptor, fd

File descriptors

• An integer value used to access a file, network, or I/O operation
• In Windows, HANDLE corresponds to the file descriptor

• Special file descriptors
• 0: standard input (stdin) – Keyboard input
• 1: standard output (stdout) – Screen
• 2: standard error (stderr) – Screen and no buffering

Process management: Process and thread

• Program: an executable file that contains code and data for execution
• Process: an executing instance of a program
• Thread: an executable unit of a process

• One thread can have multiple threads

Program
Process

Renderer thread

IO thread

UI thread

…

Threads

More example

Process ID

More example

Q: How many thread does this process have?
(Just guess)

Thread vs process

Ref: https://medium.com/@yovan/os-process-thread-user-kernel-%E7%AD%86%E8%A8%98-aa6e04d35002

Create a process using fork()

• fork(): only way to create a new process
• Variants exist: clone(), vfork(), …

• fork() creates a new process by duplicating the current process
• Copy memory including heap, code, data, and stack
• Inherits several system resources including file descriptors

Run a new program using execve()

• int execve(const char *filename, char *const
argv[], char *const envp[]);

• executes a program pointed by filename

• argv: arguments
• argv[0] points the filename that are being executed (by convention)

• envp: environment variables
• Format: KEY=VALUE (e.g., HOME=/home/vagrant)

Process layout (32bit in x86-64)
$./hello aaaa bbbb cccc

Description Example
NULL (8-byte) NULL

File name “/home/insu/hello”

Environment variable strings “COLUMNS=238”, “LANG=en_US.UTF-8”, …

Argument strings “/home/insu/hello”, “aaaa”, “bbbb”, “cccc”

… …

Environment variables { env1, env2, env3, …, envN, NULL }

Arguments { arg1, arg2, arg3, arg4, NULL }

… …

char* envp[]

char* argv[]

int argc 4

Shell

• A command line interpreter for *nix platforms

• It provides diverse functionalities
• Wildcarding (*)
• Pipelining (|)
• Variables
• …

• You can call shell commands using system() in a C program

How system() works?

• system(”id”);

• How does shell know that it needs to execute /usr/bin/id?
• Answer: PATH environment variable

• Type “printenv PATH”:
/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/b
in:/sbin:/bin:/usr/games:/usr/local/games:/snap
/bin

• Shell search each path until it finds the specific command

Vulnerability1: PATH injection

• system(”id”);

• Add other location to PATH variable
• export PATH=/home/attacker/bin:$PATH
• Make a binary named “id ” in /home/attacker/bin
• Run a program that contains system(“id”)
• This will invoke my “id ” binary, not /usr/bin/id

Vulnerability2: Command injection

• system(”/bin/ls ” + input);

• Shell has many meta-characers
• e.g., “;” can represents command separator

• Thus, if input=”; /bin/sh”, the above code will spawn a shell
for you

	Linux Fundamentals
	Announcements
	Today’s lecture
	What is Linux?
	An operating system is software that provides
	Linux file system
	Linux file system
	Linux file permission
	Special permission: setuid, setgid
	Questions about permissions
	Questions about permissions
	Questions about permissions
	Questions about permissions
	Questions about permissions
	Questions about permissions
	More on setgid
	슬라이드 번호 17
	A special file type: symbolic (soft) link
	Use a file system using open(), read(), write(), …
	File descriptors
	Process management: Process and thread
	More example
	More example
	Thread vs process
	Create a process using fork()
	Run a new program using execve()
	Process layout (32bit in x86-64)
	Shell
	How system() works?
	Vulnerability1: PATH injection
	Vulnerability2: Command injection

