
DEP/ASLR
Insu Yun

Today’s lecture

• Understand Data Execution Prevention (DEP)

• Understand how to bypass DEP (ret2libc)

• Understand Address Space Layout Randomization (ASLR)

• Understand how to bypass ASLR

COOKIEBUFFER

Stack Buffer Overflow + Run Shellcode

BUFFER

BUFFER

BUFFER

SAVED ebp

RETURN ADDR

AAAA

BBBB

CCCC

DDDD

EEEE

ADDR of
SHELLCODE

Data Execution Prevention

• Q: Know how to exploit a buffer overflow vuln. What’s next?
• A: Jump to your shellcode!

• Another Q: why do we let the attacker run a shellcode? Block it!
• Attacker uploads and runs shellcode in the stack
• Stack only stores data
• Why stack is executable?

• Make it non-executable!

All Readable Memory was Executable

• Intel/AMD CPUs
• No executable flag in page table entry – only checks RW
• AMD64 – introduced NX bit (No-eXecute, in 2003)

All Readable Memory was Executable

• Intel/AMD CPUs
• No executable flag in page table entry – only checks RW
• AMD64 – introduced NX bit (No-eXecute, in 2003)

• Windows
• Supporting DEP from Windows XP SP2 (in 2004)

• Linux
• Supporting NX since 2.6.8 (in 2004)

DEP, NX (No eXecute),
W⊕X (Write XOR Execute)

Exec / non-exec stack

• $ readelf -l /home/lab05/libbase/target

Exec / non-exec stack

• $ readelf -l /home/lab03/jmp-to-stack/target

Non-executable Stack

• Now, most of programs built with non-executable stack
• We compile a program without `-z execstack`

• Then, how to run a shell?
• Call system(“/bin/sh”)
• What if the program does not have such code?

• Library: Return to Libc

Dynamically Linked Library

• When you build a program, you use functions from library
• printf(), scanf(), read(), write(), system(), etc.

• Q: Where does that function reside?
• 1) In the program
• 2) In #include <stdio.h>, the header file
• 3) Somewhere in the process’s memory

How a Program is Loaded…

• execve(target, …, …)
• Load the target ELF file first
• Load required libraries for the target ELF (header contains the list)
• Build stack, heap and other memory
• Run!

Dynamically Linked Library: libc

• The most of programs written in C will be linked with libc
• Contains essential functionalities!
• execve(), system(), open(), read(), write(), etc.

• But where our system() is?
• Let’s check with gdb!

Finding libc Functions

• GDB

• Why?
• You should run the program to see linked libraries

Finding libc Functions

• GDB

Stack Overflow Again

• Now you know where system() is!

• “A” * 0x80 + “BBBB” + “\x40\x19\xe4\xf7”
• This will run system()
• But how to run system(“/bin/sh”) or system(“a”)?

Function Call and Stack

• Arguments
• [ebp + 0x8] is the 1st argument
• [ebp + 0xc] is the 2nd argument
• …

• What if we call system() by changing RET?
0x83ec5589

Local 2

Local 3

Local 4

SAVED ebp

RETURN ADDR RET

ARG 1

ARG 2

ebp

esp

Local 1

Function Call and Stack

• Overflow
• Leave

• mov esp, ebp
• mop ebp

• Return
• pop eip

0x83ec5589

Local 2

Local 3

Local 4

SAVED ebp

RETURN ADDR RET

ARG 1

ARG 2

ebp

esp
AAAA

Local 1

AAAA

AAAA

AAAA

AAAA

system()

ebp = 0x41414141

esp

esp

Function Call and Stack

• Executing system()
• push ebp
• mov esp, ebp
• sub esp, 0x10c

• Argument access
• What is [ebp + 8]?

• ARG2 of the vulnerable function will be ARG1
• Ret addr + 8!

0x83ec5589

Local 2

Local 3

Local 4

SAVED ebp

RETURN ADDR

ARG 1

ARG 2

AAAA

Local 1

AAAA

AAAA

AAAA

AAAA

system()

ebp = 0x41414141

esp
AAAA

espebp

esp

ebp + 0x4

ebp + 0x0

ebp + 0x8

SAVED ebp

RETURN ADDR

ARG 1

ARG 2

ebp

Calling System(“/bin/sh”)

• Let’s overwrite
• RET ADDR = addr of system()
• ARG2 = “/bin/sh”

0x83ec5589

Local 2

Local 3

Local 4

SAVED ebp

RETURN ADDR RET

ARG 1

ARG 2

ebp

esp

Local 1

ARG 3

ARG 4

ARG 5

AAAA

AAAA

AAAA

AAAA

AAAA

System()

BBBB

Addr of “/bin/sh”

Calling System(“/bin/sh”)

• Let’s overwrite
• RET ADDR = addr of system()
• ARG2 = “/bin/sh”

• When running system…
0x83ec5589

Local 2

Local 3

Local 4

SAVED ebp

RETURN ADDR RET

ARG 1

ARG 2

ebp

esp

Local 1

ARG 3

ARG 4

ARG 5

AAAA

AAAA

AAAA

AAAA

AAAA

AAAA

BBBB

Addr of “/bin/sh” ebp + 8

Calling Multiple Functions

• What if system() returns?
• ebp + 0x0 = saved ebp
• ebp + 0x4 = return address

• Return to BBBB
• Can we change this?

0x83ec5589

Local 2

Local 3

Local 4

SAVED ebp

RETURN ADDR RET

ARG 1

ARG 2

ebp

esp

Local 1

ARG 3

ARG 4

ARG 5

AAAA

AAAA

AAAA

AAAA

AAAA

AAAA

BBBB

Addr of “/bin/sh” ebp + 0x8

Calling Multiple Functions

• system(“/bin/sh”)
• printf(“asdf”)

• We can run multiple functions!
0x83ec5589

Local 2

Local 3

Local 4

SAVED ebp

RETURN ADDR RET

ARG 1

ARG 2

ebp

esp

Local 1

ARG 3

ARG 4

ARG 5

AAAA

AAAA

AAAA

AAAA

AAAA

system()

printf()

Addr of “/bin/sh” ebp + 0x8

Addr of “asdf”

COOKIEBUFFER

Stack Buffer Overflow + Run Shellcode

BUFFER

BUFFER

BUFFER

SAVED ebp

RETURN ADDR

AAAA

BBBB

CCCC

DDDD

EEEE

SHELLCODE

We need to know where the shellcode is!

COOKIEBUFFER

Stack Buffer Overflow + Run Shellcode

BUFFER

BUFFER

BUFFER

SAVED ebp

RETURN ADDR

AAAA

BBBB

CCCC

DDDD

EEEE

SHELLCODE

We need to know where the shellcode is!

Address Space Layout Randomization (ASLR)

• Attackers need to know which address to control (jump/overwrite)
• Stack - shellcode
• Library - system()
• Heap – chunks metadata (will learn this later)

• Defense: let’s randomize it!
• Attackers do not know where to jump…
• Win!

ASLR - History

• Linux PaX adapt this first in 2002
• OpenBSD – 2003
• Linux – 2005
• Windows – Vista in 2007
• iOS – iOS 4.3 in 2011
• Android – Android 4.0 ICS in 2011

ASLR - History

ASLR: Randomize Addresses per Each
Execution

How Random is the Address?
Space Entropy Chance

32bit stack 19 bits 1 in 524288

32bit heap 13 bits 1 in 8192

32bit library 8 bits 1 in 512

64bit stack 30 bits 1 in 1G…

64bit heap 28 bits 1 in 128M

64bit library 28 bits 1 in 128M

64bit Windows 19 bits 1 in 524288

Overhead?

• <1% in 64 bit
• printf(”asdf”)
• Access all strings via relative address from current %rip

• lea 0x23423(%rip), %rdi

• ~ 3% in 32 bit
• Cannot address using %eip

• How?
• call +5; pop %ebx; add $0x23423, %ebx; GETTING EIP to EBX

CODE

DATA

PRINTF

”asdf”

0x23423

Then, How Can We Bypass ASLR?

• Brute-force
• Get a core dump
• Set that address
• Run for N times!

• Eventually the address will be matched..
• Look at the table

• Requires too many trials in some cases…

Space Entropy Chance

32bit stack 19 bits 1 in 524288

32bit heap 13 bits 1 in 8192

32bit library 8 bits 1 in 512

64bit stack 30 bits 1 in 1G…

64bit heap 28 bits 1 in 128M

64bit library 28 bits 1 in 128M

64bit Windows 19 bits 1 in 524288

Leak address

• Information Leak
• Leak the target address!
• libc? Where is the system()?

• Leaking a target address (e.g., system()) could be difficult
1. system() should be used in a program
2. Our bug should be located near the use of system()

Understanding ASLR Characteristics

• How do they randomize the address?
• Change the BASE address of each area
• Use relative addressing in the area

Relative Addressing

Addresses are different,
But their distances are the same

ASLR Bypass Strategy

• Library
• ldd first
• Open that library with gdb
• Print functions!

• Prints offset

• Attacking Library
• Leak one library address (e.g., FUNC_A)
• Find what is the base address: LIBC_BASE = LEAK – OFFSET_A
• Calculate system: SYSTEM = LIBC_BASE + OFFSET_SYSTEM

ASLR bypass in pwntools version

from pwn import *

libc = ELF('/lib/i386-linux-gnu/libc.so.6’)
printf_address = 0xf7e0e430 # leak()
libc_base = printf_address - libc.symbols['printf’]

check page align
assert(libc_base & 0xfff == 0)
system_base = libc_base + libc.symbols['system']

CAVEAT

• To have a strong defense, systems have to randomize all addresses
• Code, data, stack, heap, library, mmap(), etc.

• However, Code/data still merely randomized
• Why? Some compatibility issue…

Position Independent Executable (PIE)

• Randomize Code/Data!
• Now everything becomes randomized

• Unlike libraries, you need to recompile code
• Why?

• Now, PIE becomes default.
• i.e., If you compile a program with a recent compiler, your main() will be

randomized

Position Independent Executable (PIE)

/bin/cat from Ubuntu 16.04.3 /bin/sh from Ubuntu 16.04.3

	DEP/ASLR
	Today’s lecture
	Stack Buffer Overflow + Run Shellcode
	Data Execution Prevention
	슬라이드 번호 5
	All Readable Memory was Executable
	All Readable Memory was Executable
	Exec / non-exec stack
	Exec / non-exec stack
	Non-executable Stack
	Dynamically Linked Library
	How a Program is Loaded…
	Dynamically Linked Library: libc
	Finding libc Functions
	Finding libc Functions
	Stack Overflow Again
	Function Call and Stack
	Function Call and Stack
	Function Call and Stack
	Calling System(“/bin/sh”)
	Calling System(“/bin/sh”)
	Calling Multiple Functions
	Calling Multiple Functions
	Stack Buffer Overflow + Run Shellcode
	Stack Buffer Overflow + Run Shellcode
	Address Space Layout Randomization (ASLR)
	ASLR - History
	ASLR - History
	ASLR: Randomize Addresses per Each Execution
	How Random is the Address?
	Overhead?
	Then, How Can We Bypass ASLR?
	Leak address
	Understanding ASLR Characteristics
	Relative Addressing
	ASLR Bypass Strategy
	ASLR bypass in pwntools version
	CAVEAT
	슬라이드 번호 39
	Position Independent Executable (PIE)
	Position Independent Executable (PIE)

