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Today’s lecture

• Understand Data Execution Prevention (DEP)

• Understand how to bypass DEP (ret2libc)

• Understand Address Space Layout Randomization (ASLR)

• Understand how to bypass ASLR
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Stack Buffer Overflow + Run Shellcode
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Data Execution Prevention

• Q: Know how to exploit a buffer overflow vuln. What’s next?
• A: Jump to your shellcode!

• Another Q: why do we let the attacker run a shellcode? Block it!
• Attacker uploads and runs shellcode in the stack
• Stack only stores data
• Why stack is executable?

• Make it non-executable!





All Readable Memory was Executable

• Intel/AMD CPUs
• No executable flag in page table entry – only checks RW
• AMD64 – introduced NX bit (No-eXecute, in 2003)



All Readable Memory was Executable

• Intel/AMD CPUs
• No executable flag in page table entry – only checks RW
• AMD64 – introduced NX bit (No-eXecute, in 2003)

• Windows
• Supporting DEP from Windows XP SP2 (in 2004)

• Linux
• Supporting NX since 2.6.8 (in 2004)

DEP, NX (No eXecute), 
W⊕X (Write XOR Execute)



Exec / non-exec stack

• $ readelf -l /home/lab05/libbase/target



Exec / non-exec stack

• $ readelf -l /home/lab03/jmp-to-stack/target



Non-executable Stack

• Now, most of programs built with non-executable stack
• We compile a program without `-z execstack`

• Then, how to run a shell?
• Call system(“/bin/sh”)
• What if the program does not have such code?

• Library: Return to Libc



Dynamically Linked Library

• When you build a program, you use functions from library
• printf(), scanf(), read(), write(), system(), etc.

• Q: Where does that function reside?
• 1) In the program
• 2) In #include <stdio.h>, the header file
• 3) Somewhere in the process’s memory



How a Program is Loaded…

• execve(target, …, …)
• Load the target ELF file first
• Load required libraries for the target ELF (header contains the list)
• Build stack, heap and other memory
• Run!



Dynamically Linked Library: libc

• The most of programs written in C will be linked with libc
• Contains essential functionalities!
• execve(), system(), open(), read(), write(), etc.

• But where our system() is?
• Let’s check with gdb!



Finding libc Functions

• GDB

• Why?
• You should run the program to see linked libraries



Finding libc Functions

• GDB



Stack Overflow Again

• Now you know where system() is!

• “A” * 0x80 + “BBBB” + “\x40\x19\xe4\xf7”
• This will run system()
• But how to run system(“/bin/sh”) or system(“a”)?



Function Call and Stack

• Arguments
• [ebp + 0x8] is the 1st argument
• [ebp + 0xc] is the 2nd argument
• …

• What if we call system() by changing RET?
0x83ec5589
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Function Call and Stack

• Overflow
• Leave

• mov esp, ebp
• mop ebp

• Return
• pop eip

0x83ec5589

Local 2

Local 3

Local 4

SAVED ebp

RETURN ADDR RET

ARG 1

ARG 2

ebp

esp
AAAA

Local 1
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system()

ebp = 0x41414141

esp

esp



Function Call and Stack

• Executing system()
• push ebp
• mov esp, ebp
• sub esp, 0x10c

• Argument access
• What is [ebp + 8]?

• ARG2 of the vulnerable function will be ARG1
• Ret addr + 8!

0x83ec5589

Local 2

Local 3

Local 4

SAVED ebp

RETURN ADDR

ARG 1

ARG 2
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AAAA
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system()

ebp = 0x41414141

esp
AAAA
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esp
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RETURN ADDR
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Calling System(“/bin/sh”)

• Let’s overwrite
• RET ADDR = addr of system()
• ARG2 = “/bin/sh”

0x83ec5589
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Local 4
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RETURN ADDR RET
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Addr of “/bin/sh”



Calling System(“/bin/sh”)

• Let’s overwrite
• RET ADDR = addr of system()
• ARG2 = “/bin/sh”

• When running system…
0x83ec5589

Local 2

Local 3

Local 4

SAVED ebp

RETURN ADDR RET

ARG 1

ARG 2

ebp

esp

Local 1

ARG 3

ARG 4

ARG 5

AAAA

AAAA

AAAA

AAAA

AAAA

AAAA

BBBB

Addr of “/bin/sh” ebp + 8



Calling Multiple Functions

• What if system() returns?
• ebp + 0x0 = saved ebp
• ebp + 0x4 = return address

• Return to BBBB
• Can we change this?

0x83ec5589

Local 2

Local 3

Local 4

SAVED ebp

RETURN ADDR RET

ARG 1

ARG 2

ebp

esp

Local 1

ARG 3

ARG 4

ARG 5

AAAA

AAAA

AAAA

AAAA

AAAA

AAAA

BBBB

Addr of “/bin/sh” ebp + 0x8



Calling Multiple Functions

• system(“/bin/sh”)
• printf(“asdf”)

• We can run multiple functions!
0x83ec5589

Local 2

Local 3

Local 4

SAVED ebp

RETURN ADDR RET

ARG 1

ARG 2

ebp

esp

Local 1

ARG 3

ARG 4

ARG 5

AAAA

AAAA

AAAA

AAAA

AAAA

system()

printf()

Addr of “/bin/sh” ebp + 0x8

Addr of “asdf”
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We need to know where the shellcode is!
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Address Space Layout Randomization (ASLR)

• Attackers need to know which address to control (jump/overwrite)
• Stack - shellcode
• Library - system()
• Heap – chunks metadata (will learn this later)

• Defense: let’s randomize it!
• Attackers do not know where to jump…
• Win!



ASLR - History

• Linux PaX adapt this first in 2002
• OpenBSD – 2003
• Linux – 2005
• Windows – Vista in 2007
• iOS – iOS 4.3 in 2011
• Android – Android 4.0 ICS in 2011



ASLR - History



ASLR: Randomize Addresses per Each 
Execution



How Random is the Address?
Space Entropy Chance

32bit stack 19 bits 1 in 524288

32bit heap 13 bits 1 in 8192

32bit library 8 bits 1 in 512

64bit stack 30 bits 1 in 1G…

64bit heap 28 bits 1 in 128M

64bit library 28 bits 1 in 128M

64bit Windows 19 bits 1 in 524288



Overhead?

• <1% in 64 bit
• printf(”asdf”)
• Access all strings via relative address from current %rip

• lea 0x23423(%rip), %rdi

• ~ 3% in 32 bit
• Cannot address using %eip

• How?
• call +5; pop %ebx; add $0x23423, %ebx; GETTING EIP to EBX

CODE

DATA

PRINTF

”asdf”

0x23423



Then, How Can We Bypass ASLR?

• Brute-force
• Get a core dump
• Set that address
• Run for N times!

• Eventually the address will be matched..
• Look at the table

• Requires too many trials in some cases…

Space Entropy Chance

32bit stack 19 bits 1 in 524288

32bit heap 13 bits 1 in 8192

32bit library 8 bits 1 in 512

64bit stack 30 bits 1 in 1G…

64bit heap 28 bits 1 in 128M

64bit library 28 bits 1 in 128M

64bit Windows 19 bits 1 in 524288



Leak address

• Information Leak
• Leak the target address!
• libc? Where is the system()?

• Leaking a target address (e.g., system()) could be difficult
1. system() should be used in a program
2. Our bug should be located near the use of system()



Understanding ASLR Characteristics

• How do they randomize the address?
• Change the BASE address of each area
• Use relative addressing in the area



Relative Addressing

Addresses are different,
But their distances are the same



ASLR Bypass Strategy

• Library
• ldd first
• Open that library with gdb
• Print functions!

• Prints offset

• Attacking Library
• Leak one library address (e.g., FUNC_A) 
• Find what is the base address: LIBC_BASE = LEAK – OFFSET_A
• Calculate system: SYSTEM = LIBC_BASE + OFFSET_SYSTEM



ASLR bypass in pwntools version

from pwn import *

libc = ELF('/lib/i386-linux-gnu/libc.so.6’)
printf_address = 0xf7e0e430 # leak()
libc_base = printf_address - libc.symbols['printf’]

# check page align
assert(libc_base & 0xfff == 0)
system_base = libc_base + libc.symbols['system']



CAVEAT

• To have a strong defense, systems have to randomize all addresses
• Code, data, stack, heap, library, mmap(), etc.

• However, Code/data still merely randomized
• Why? Some compatibility issue…





Position Independent Executable (PIE)

• Randomize Code/Data!
• Now everything becomes randomized

• Unlike libraries, you need to recompile code
• Why?

• Now, PIE becomes default.
• i.e., If you compile a program with a recent compiler, your main() will be 

randomized



Position Independent Executable (PIE)

/bin/cat from Ubuntu 16.04.3 /bin/sh from Ubuntu 16.04.3
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