
Module: Dynamic Allocator Mis
What is the Heap?

Yan Shoshitaishvili
Arizona State University

From pwn.college!

Recap: Types of Memory
Memory comes in different types...

ELF .text: where the code lives
ELF .plt: where library function stubs live
ELF .got: where pointers to imported symbols live
ELF .bss: used for uninitialized global writable data (such as global arrays without initial values)
ELF .data: used for pre-initialized global writable data (such as global arrays with initial values)
ELF .rodata: used for global read-only data (such as string constants)
stack: local variables, temporary storage, call stack metadata

But what if you needed a place to store long-lived dynamic memory. Example: a
variable-length list of NPCs in a game.

What if you needed dynamic memory allocation?

One idea: mmap
What if we mmap()ed
memory as we need
it?

mmap(0, num_pages*0x1000, ...)

✅ Allows dynamic allocation/deallocation
according to changing program needs...

✅ Allocated memory survives across
functions.

🇽🇽 Inflexible allocation size (must be
multiples of 4096 bytes!).

🇽🇽 Crazy slow (requires kernel involvement).

Smarter solution...
What if we...
... wrote a library...
... that mmap()ed a bunch of memory...
... and handed out small chunks of it...
... on demand!

The library could be used like:
char *firstname = allocate_memory(128);
char *lastname = allocate_memory(256);
scanf("%s %s", firstname, lastname);
printf("Hello %s %s!", firstname, lastname);
free_memory(firstname);
free_memory(lastname);

mmap()ed but unassignedfirstname lastname

Dynamic Allocators exist!
We're not the first to have this idea:

General Purpose:
Doug Lea (pictured) releases dlmalloc into public
domain in 1987.

Linux:
ptmalloc (Posix Thread aware fork of dlmalloc)

FreeBSD:
jemalloc (also used in Firefox, Android)

Windows:
Segment Heap, NT Heap

Kernel allocators:
kmalloc (Linux kernel memory allocator)
kalloc (iOS kernel memory allocator)

Terminology: "The Heap"
The memory space managed by a dynamic allocator is colloquially known as
"The Heap".

What does the heap do?
The heap, as implemented by ptmalloc/glibc (and analogues), provides:

- malloc() - allocate some memory
- free() - free a prior allocated chunk

And some auxiliary functions:

- realloc() - change the size of an allocation
- calloc() - allocate and zero-out memory

These functions are used, extensively, by practically every single
non-trivial piece of software.

How does the heap work?
ptmalloc actually does not use mmap!

The Data Segment:
- historic oddity from segmented memory spaces of yore
- with ASLR, placed randomly into memory near-ish the PIE base
- starts out with a size of 0
- managed by the brk and sbrk system calls:

sbrk(NULL) returns the end of the data segment
sbrk(delta) expands the end of the data segment by delta bytes
brk(addr) expands the end of the data segment to addr

Under the hood, this is managed just like mmap().

ptmalloc slices off bits of the data segment for small allocations,
and uses mmap() for large allocations.

Dangers of the heap
What can go wrong?

The heap is:
1. used by imperfect human programmers

- humans forget to free memory
- humans forget all the spots where they store pointers to data
- humans forget what they've freed

2. a library that strives for performance
- allocation and deallocation needs to be fast, or programs will slow down
- optimizations often leave security as an afterthought

Bugs caused by #1 become security issues due to #2 if not caught!

Here lies danger...
How to detect issues?

- valgrind can detect heap misuse (if your testcases trigger it)
- glibc itself has some hardening techniques:

- export MALLOC_CHECK_=1
- export MALLOC_PERTURB_=1
- export MALLOC_MMAP_THRESHOLD_=1

- there are various "more secure" allocators being developed (but not really deployed)

Like many other issues, no general techniques exist for detecting dynamic
allocation errors...

Module: Dynamic Allocator Mis
Here Lies Danger

Yan Shoshitaishvili
Arizona State University

Dangers of the heap - security vs performance
The lifecycle of allocator security.

allocator: *exists* application developers:
"the allocator should be faster!"

allocator developers:
"here is a optimization/caching layer to
speed things up!"

security researchers:
"this optimization/caching layer
introduces major security issues!"

allocator developers:
"security is not important! WE NEED
SPEED!"

security researchers:
exploit
media coverage

allocator developers:
"here is a security fix for the last
optimization/caching layer!"

Dangers of the heap - security vs performance
The lifecycle of allocator security.

allocator: *exists* application developers:
"the allocator should be faster!"

allocator developers:
"here is a optimization/caching layer to
speed things up!"

security researchers:
"this optimization/caching layer
introduces major security issues!"

allocator developers:
"security is not important! WE NEED
SPEED!"

security researchers:
exploit
media coverage

allocator developers:
"here is a security fix for the last
optimization/caching layer!"

Dangers of the heap
More than one way to misuse the heap!

- Forgetting to free memory.
- leads to resource exhaustion

- Forgetting that we have freed memory.
- using free memory
- freeing free memory

- Corrupting metadata used by the allocator to keep track of heap state.
- conceptually similar to corruption internal function state on the stack

Dangers of the heap: Memory Leaks
Problem: Allocated memory must be explicitly freed.

int foo()
{

char *blah = malloc(1024);
// use blah in safe ways
return 1;

}

What happens with the memory pointed to by blah?

Why is this a security issue?

Dangers of the heap: Use After Free
Pointers to an allocation remain valid after free()ing the allocation, and might
be used afterwards! Why is this bad?

int main() {
char *user_input = malloc(8);

printf("Name? ");
scanf("%7s", user_input);
printf("Hello %s!\n", user_input);
free(user_input);

long *authenticated = malloc(8);
*authenticated = 0;

printf("Password? ");
scanf("%7s", user_input);

if (getuid() == 0 || strcmp(user_input, "hunter2") == 0) *authenticated = 1;
if (*authenticated) sendfile(0, open("/flag", 0), 0, 128);

}

Simple case: UAF, but with a printf() instead of a scanf().

Complex case: Some heap implementations (including dlmalloc and ptmalloc)
reuse free()d chunks to store metadata.

int main() {
char *password = malloc(8);
char *name = malloc(8);

printf("Password? ");
scanf("%7s", password);
assert(strcmp(password, "hunter2") == 0);
free(password);

printf("Name? ");
scanf("%7s", name);
printf("Hello %s!\n", name);
free(name);

printf("Goodbye, %s!\n", name);
}

Dangers of the heap: Memory Disclosure

Allocator metadata can be written, not just read,
to cause crazy effects.

One of the earliest widespread heap exploits,
developed by Solar Designer in 2000:
https://www.openwall.com/articles/JPEG-COM-Marker-Vulnerability

Soon formalized in hacker literature in 2001:
- Vudo malloc tricks, by MaXX:

http://phrack.org/issues/57/8.html

- Once upon a free(), by anonymous:
http://phrack.org/issues/57/9.html

Now a whole genre in the hacking scene!

Dangers of the heap: Metadata Corruption

https://www.openwall.com/articles/JPEG-COM-Marker-Vulnerability
http://phrack.org/issues/57/8.html
http://phrack.org/issues/57/9.html

Hackers are Weird: The Rise of the Houses
Phantasmal Phantasmagoria developed a "lore" around heap metadata
corruption: https://seclists.org/bugtraq/2005/Oct/118

Described and named a number of metadata corruption techniques:
- The House of Prime
- The House of Mind
- The House of Force
- The House of Lore
- The House of Spirit
- The House of Chaos

Things got out of hand quick. Later work:
- House of Underground
- House of Orange
- House of Einherjar
- House of Rabbit
- House of Botcake

https://seclists.org/bugtraq/2005/Oct/118

The Danger of Overlapping Allocations
Typically, heap metadata corruption is used to confuse the allocator into
allocating overlapping memory. As we saw with UAF, this can be extremely
dangerous.

If two pointers are pointing to the same memory
... and one of the pointers is treated by the program in a security-critical manner
... and the other one can be written to or read by an attacker
... it's game over!

"Security-critical manner?"
- authentication variables
- function pointers (control flow hijack)
- program metadata such as length (inducing memory errors)
- sensitive data (such as the flag)

Module: Dynamic Allocator Mis
Metadata and Chunks

Yan Shoshitaishvili
Arizona State University

As we saw with tcache, the ptmalloc uses a bunch of metadata to track its
operation. It keeps them in:

1. global metadata (i.e., the tcache structure)
2. per-chunk metadata

What's a chunk?

Heap Metadata and its Corruption

malloc(x) returns mem_addr, but in actuality, ptmalloc tracks chunk_addr:

Metadata: Allocated Chunks

unsigned long mchunk_prev_size;

unsigned long mchunk_size;

USABLE MEMORY (at least size x)

mem_addr:

chunk_addr:

malloc(n) guarantees at least n usable space, but chunks sizes are multiples of
0x10.

Metadata: Size?

unsigned long mchunk_prev_size;

unsigned long mchunk_size;

USABLE MEMORY (at least size x)

mem_addr:

chunk_addr:

Last 3 bits are flags:
Bit 0: PREV_IN_USE
Bit 1: IS_MMAPPED
Bit 2: NON_MAIN_ARENA

Not used for tcache...

To save memory, the prev_size field of a chunk whose PREV_INUSE flag is set
(i.e., the previous chunk is not free) is used by the previous chunk!

Metadata: Overlapping metadata!

chunk1: unsigned long *a = malloc(0x10)

prev_size size a[0] a[1]

chunk2: unsigned long *b = malloc(0x10)

prev_size size b[0] b[1]

chunk1: unsigned long *a = malloc(0x18)

prev_size size a[0] a[1]

chunk2: unsigned long *b = malloc(0x10)

prev_size size b[0] b[1]

a[2]

As we saw with tcache, a free()d chunk has additional metadata about the
location of other chunks:

Metadata: Freed Chunks

unsigned long mchunk_prev_size;

unsigned long mchunk_size;

CACHE-SPECIFIC METADATA

mem_addr:

chunk_addr:

This information is constantly changing (see: tcache) and PTMALLOC IS VERY
COMPLEX. This is an approximation.

Currently, the ptmalloc caching design is (in order of use):

1. 64 singly-linked tcache bins for allocations of size 16 to 1032 (functionally "covers" fastbins and
smallbins)

2. 10 singly-linked "fast" bins for allocations of size up to 160 bytes
3. 1 doubly-linked "unsorted" bin to quickly stash free()d chunks that don't fit into tcache or

fastbins
4. 64 doubly-linked "small" bins for allocations up to 512 bytes
5. doubly-linked "large" bins (anything over 512 bytes) that contain different-sized chunks

Metadata: Different Caches

Free tcache-cached chunks have a pointer to the allocated space of the next
chunk and a pointer to the per-thread struct.

Metadata: tcache Chunks

unsigned long mchunk_prev_size;

unsigned long mchunk_size;

struct tcache_entry *next;

struct tcache_perthread_struct *key;

mem_addr:

chunk_addr:

When free()d, large are:
1. Consolidated with adjacent free chunks.
2. Put into an "unsorted" bin regardless of size.
3. Properly put into a doubly-linked list later, during the next allocation that they fail to "satisfy".

Metadata: largebin Chunks

unsigned long mchunk_prev_size;

unsigned long mchunk_size;

struct malloc_chunk* fd;

struct malloc_chunk* bk;

struct malloc_chunk* fd_nextsize;

struct malloc_chunk* bk_nextsize;

mem_addr:

chunk_addr:

The heap is a finite-sized allocation that needs to be manually expanded.

During allocation, malloc() will (simplified view):

1. Look for a free chunk that will satisfy the allocation, and return it.
2. Otherwise, check the "available" space left at the end of the heap. If there is enough

there, return that and reduce the "available" space.
3. If there isn't enough "available" space, malloc() will mmap() certain large allocations.
4. Otherwise, malloc will grow the heap with brk() and go to #2.

How does malloc() store the available space? In the "Wilderness", a fake chunk
at the end of the heap that stores the available space.

Metadata: The Wilderness

Allocators are different! This metadata discussion, and tcache, is very ptmalloc-
specific.

Example: jemalloc has no inline metadata!

Other Allocators?

Module: Dynamic Allocator Mis
Heap Metadata Corruption

Yan Shoshitaishvili
Arizona State University

Recap: Metadata Corruption Goals
What might we want to achieve with heap metadata corruption?

Modify arbitrary memory.

Achieve an overlapping allocation (with other heap structures, stack, etc).

Use either of those capabilities for further control.

Historical: The Unlink Attack
Recall the struct (to the right).

When a chunk (bigger than the tcache size) is allocated, it is removed from the
doubly-linked list. This looks like:

chunk->fd->bk = chunk->bk;
chunk->bk->fd = chunk->fd;

struct malloc_chunk {
unsigned long mchunk_prev_size;
unsigned long mchunk_size;
struct malloc_chunk* fd;
struct malloc_chunk* bk;
struct malloc_chunk* fd_nextsize;
struct malloc_chunk* bk_nextsize;

};

typedef struct malloc_chunk* mchunkptr;

Historical: The Unlink Attack

struct malloc_chunk {
unsigned long mchunk_prev_size;
unsigned long mchunk_size;
struct malloc_chunk* fd;
struct malloc_chunk* bk;
struct malloc_chunk* fd_nextsize;
struct malloc_chunk* bk_nextsize;

};

typedef struct malloc_chunk* mchunkptr;

chunk A

bk: NULL

fd: &B

chunk B

bk: &A

fd: &C

chunk C

bk: &B

fd: NULL

Historical: The Unlink Attack

struct malloc_chunk {
unsigned long mchunk_prev_size;
unsigned long mchunk_size;
struct malloc_chunk* fd;
struct malloc_chunk* bk;
struct malloc_chunk* fd_nextsize;
struct malloc_chunk* bk_nextsize;

};

typedef struct malloc_chunk* mchunkptr;

chunk A

bk: NULL

fd: &B

chunk B

bk: &A

fd: &C

chunk C

bk: &B

fd: NULL

Historical: The Unlink Attack
Recall the struct (to the right).

When a chunk (bigger than the tcache size) is allocated, it is removed from the
doubly-linked list. This looks like:

chunk->fd->bk = chunk->bk;
chunk->bk->fd = chunk->fd;

If you control chunk->fd and chunk->bk, you can overwrite an arbitrary location in
memory with an arbitrary (but valid) pointer.

Extra checks (chunk->fd->bk == chunk && chunk->bk->fd == chunk) have heavily weakened this
attack (though you can still pass this check if you inject a chunk!).

struct malloc_chunk {
unsigned long mchunk_prev_size;
unsigned long mchunk_size;
struct malloc_chunk* fd;
struct malloc_chunk* bk;
struct malloc_chunk* fd_nextsize;
struct malloc_chunk* bk_nextsize;

};

typedef struct malloc_chunk* mchunkptr;

Historical: Poison Null Byte
What if all we have is a single 0-byte write? This is common, with off-by-one
string operations!

buf = malloc(0x1008);
int read_length = read(0, 0x1008, 128);
buf[read_length] = 0;

What's the problem here?

struct malloc_chunk {
unsigned long prev_size;
unsigned long size;
struct malloc_chunk* fd;
struct malloc_chunk* bk;
struct malloc_chunk* fd_nextsize;
struct malloc_chunk* bk_nextsize;

};

Historical: Poison Null Byte

struct malloc_chunk {
unsigned long prev_size;
unsigned long size;
struct malloc_chunk* fd;
struct malloc_chunk* bk;
struct malloc_chunk* fd_nextsize;
struct malloc_chunk* bk_nextsize;

};

Figure source: https://heap-
exploitation.dhavalkapil.com/attacks/shrinking_free_chunks.html

Historical: House of Force
My personal favorite house, but now patched...

The wilderness is just hanging out on the heap!

What if we overwrite it with a humongous number?

We could control where stuff will be allocated, and get an overlapping
allocation!!!

House of Spirit
Straight-forward: exploit the fact that there are very few checks done at free()
time!

1. Forge something that looks like a chunk.
2. free() it.
3. The next malloc() will return that chunk to you!

With a pointer overwrite, can be used to later malloc() a stack pointer.

Can be done with or without tcache.

Miscellaneous Heapery
How do you trigger a malloc() in an uncooperative program?

printf(), scanf(), and friends will use malloc() to allocate space during
operation!

With the right setup, can lead straight to an overwrite.

If you want to disable this in your own programs:

setbuf(stdout, NULL);
setbuf(stdin, NULL);

Major Heap Headache: Heap Massaging
Heap exploitation requires precise heap layout.

Programs are constantly messing with the heap.

Some automation is being worked on
(https://www.usenix.org/conference/usenixsecurity18/presentation/heelan)!

Mastering this is hard.

https://www.usenix.org/conference/usenixsecurity18/presentation/heelan

Further reading
Educational heap exploitation resources by Shellphish:
https://github.com/shellphish/how2heap

A guidebook on the heap:
https://heap-exploitation.dhavalkapil.com

Automated heap security analysis engine:
https://github.com/angr/heaphopper

https://github.com/shellphish/how2heap
https://heap-exploitation.dhavalkapil.com/
https://github.com/angr/heaphopper

Module: Dynamic Allocator Mis
tcache

Yan Shoshitaishvili
Arizona State University

tcache
"Thread Local Caching" in ptmalloc, to speed up repeated (small) allocations in a
single thread.

Implemented as a singly-linked list, with each thread having a list header for
different-sized allocations.

typedef struct tcache_perthread_struct
{
char counts[TCACHE_MAX_BINS];
tcache_entry *entries[TCACHE_MAX_BINS];

} tcache_perthread_struct;

typedef struct tcache_perthread_struct
{

char counts[TCACHE_MAX_BINS];
tcache_entry *entries[TCACHE_MAX_BINS];

} tcache_perthread_struct;

typedef struct tcache_entry
{

struct tcache_entry *next;
struct tcache_perthread_struct *key;

} tcache_entry;

Interlude: what is a linked list?
tcache_perthread_struct Bën

counts: ...

entries: ...entry_16: &A entry_32: &C entry_48: &D

count_16: 2 count_32: 3 count_48: 1

entry_64: NULL

count_64: 0

tcache_entry A

key: &Bën

next: &B

tcache_entry C

key: &Bën

next: &E

tcache_entry D

key: &Bën

next:
NULL

tcache_entry B

key: &Bën

next:
NULL

tcache_entry E

key: &Bën

next: &F

tcache_entry F

key: &Bën

next:
NULL

a = malloc(16);
b = malloc(16);
c = malloc(32);
d = malloc(48);
e = malloc(32);
f = malloc(32);

// allocations that are not freed
// don't show up in the tcache!
x = malloc(64);
y = malloc(64);
z = malloc(64);

// later freed allocations show up
// earlier in the tcache list order
free(b);
free(a);
free(f);
free(e);
free(c);
free(d);

How did we get here?
tcache_perthread_struct Bën

counts: ...

entries: ...entry_16: &A entry_32: &C entry_48: &D

count_16: 2 count_32: 3 count_48: 1

entry_64: NULL

count_64: 0

tcache_entry A

key: &Bën

next: &B

tcache_entry C

key: &Bën

next: &E

tcache_entry D

key: &Bën

next:
NULL

tcache_entry B

key: &Bën

next:
NULL

tcache_entry E

key: &Bën

next: &F

tcache_entry F

key: &Bën

next:
NULL

tcache_entry X

key: NULL

next:
NULL

tcache_entry Y

key: NULL

next:
NULL

tcache_entry Z

key: NULL

next:
NULL

a = malloc(16);
b = malloc(16);
c = malloc(32);
d = malloc(48);
e = malloc(32);
f = malloc(32);

// allocations that are not freed
// don't show up in the tcache!
x = malloc(64);
y = malloc(64);
z = malloc(64);

// later freed allocations show up
// earlier in the tcache list order
free(b);
free(a);
free(f);
free(e);
free(c);
free(d);

How did we get here?
tcache_perthread_struct Bën

counts: ...

entries: ...entry_16: NULL entry_32: NULL entry_48: NULL

count_16: 0 count_32: 0 count_48: 0

entry_64: NULL

count_64: 0

tcache_entry A

key: NULL

next:
NULL

tcache_entry C

key: NULL

next:
NULL

tcache_entry D

key: NULL

next:
NULL

tcache_entry B

key: NULL

next:
NULL

tcache_entry E

key: NULL

next:
NULL

tcache_entry F

key: NULL

next:
NULL

tcache_entry X

key: NULL

next:
NULL

tcache_entry Y

key: NULL

next:
NULL

tcache_entry Z

key: NULL

next:
NULL

a = malloc(16);
b = malloc(16);
c = malloc(32);
d = malloc(48);
e = malloc(32);
f = malloc(32);

// allocations that are not freed
// don't show up in the tcache!
x = malloc(64);
y = malloc(64);
z = malloc(64);

// later freed allocations show up
// earlier in the tcache list order
free(b);
free(a);
free(f);
free(e);
free(c);
free(d);

How did we get here?
tcache_perthread_struct Bën

counts: ...

entries: ...entry_16: &B entry_32: NULL entry_48: NULL

count_16: 1 count_32: 0 count_48: 0

entry_64: NULL

count_64: 0

tcache_entry A

key: NULL

next:
NULL

tcache_entry C

key: NULL

next:
NULL

tcache_entry D

key: NULL

next:
NULL

tcache_entry B

key: Bën

next:
NULL

tcache_entry E

key: NULL

next:
NULL

tcache_entry F

key: NULL

next:
NULL

tcache_entry X

key: NULL

next:
NULL

tcache_entry Y

key: NULL

next:
NULL

tcache_entry Z

key: NULL

next:
NULL

a = malloc(16);
b = malloc(16);
c = malloc(32);
d = malloc(48);
e = malloc(32);
f = malloc(32);

// allocations that are not freed
// don't show up in the tcache!
x = malloc(64);
y = malloc(64);
z = malloc(64);

// later freed allocations show up
// earlier in the tcache list order
free(b);
free(a);
free(f);
free(e);
free(c);
free(d);

How did we get here?
tcache_perthread_struct Bën

counts: ...

entries: ...entry_16: &A entry_32: NULL entry_48: NULL

count_16: 2 count_32: 0 count_48: 0

entry_64: NULL

count_64: 0

tcache_entry A

key: Bën

next: &B

tcache_entry C

key: NULL

next:
NULL

tcache_entry D

key: NULL

next:
NULL

tcache_entry B

key: Bën

next:
NULL

tcache_entry E

key: NULL

next:
NULL

tcache_entry F

key: NULL

next:
NULL

tcache_entry X

key: NULL

next:
NULL

tcache_entry Y

key: NULL

next:
NULL

tcache_entry Z

key: NULL

next:
NULL

a = malloc(16);
b = malloc(16);
c = malloc(32);
d = malloc(48);
e = malloc(32);
f = malloc(32);

// allocations that are not freed
// don't show up in the tcache!
x = malloc(64);
y = malloc(64);
z = malloc(64);

// later freed allocations show up
// earlier in the tcache list order
free(b);
free(a);
free(f);
free(e);
free(c);
free(d);

How did we get here?
tcache_perthread_struct Bën

counts: ...

entries: ...entry_16: &A entry_32: &F entry_48: NULL

count_16: 2 count_32: 1 count_48: 0

entry_64: NULL

count_64: 0

tcache_entry A

key: Bën

next: &B

tcache_entry C

key: NULL

next:
NULL

tcache_entry D

key: NULL

next:
NULL

tcache_entry B

key: Bën

next:
NULL

tcache_entry E

key: NULL

next:
NULL

tcache_entry F

key: Bën

next:
NULL

tcache_entry X

key: NULL

next:
NULL

tcache_entry Y

key: NULL

next:
NULL

tcache_entry Z

key: NULL

next:
NULL

a = malloc(16);
b = malloc(16);
c = malloc(32);
d = malloc(48);
e = malloc(32);
f = malloc(32);

// allocations that are not freed
// don't show up in the tcache!
x = malloc(64);
y = malloc(64);
z = malloc(64);

// later freed allocations show up
// earlier in the tcache list order
free(b);
free(a);
free(f);
free(e);
free(c);
free(d);

How did we get here?
tcache_perthread_struct Bën

counts: ...

entries: ...entry_16: &A entry_32: &E entry_48: NULL

count_16: 2 count_32: 2 count_48: 0

entry_64: NULL

count_64: 0

tcache_entry A

key: Bën

next: &B

tcache_entry C

key: NULL

next:
NULL

tcache_entry D

key: NULL

next:
NULL

tcache_entry B

key: Bën

next:
NULL

tcache_entry E

key: Bën

next: &F

tcache_entry F

key: Bën

next:
NULL

tcache_entry X

key: NULL

next:
NULL

tcache_entry Y

key: NULL

next:
NULL

tcache_entry Z

key: NULL

next:
NULL

a = malloc(16);
b = malloc(16);
c = malloc(32);
d = malloc(48);
e = malloc(32);
f = malloc(32);

// allocations that are not freed
// don't show up in the tcache!
x = malloc(64);
y = malloc(64);
z = malloc(64);

// later freed allocations show up
// earlier in the tcache list order
free(b);
free(a);
free(f);
free(e);
free(c);
free(d);

How did we get here?
tcache_perthread_struct Bën

counts: ...

entries: ...entry_16: &A entry_32: &C entry_48: NULL

count_16: 2 count_32: 3 count_48: 0

entry_64: NULL

count_64: 0

tcache_entry A

key: Bën

next: &B

tcache_entry C

key: Bën

next: &E

tcache_entry D

key: NULL

next:
NULL

tcache_entry B

key: Bën

next:
NULL

tcache_entry E

key: Bën

next: &F

tcache_entry F

key: Bën

next:
NULL

tcache_entry X

key: NULL

next:
NULL

tcache_entry Y

key: NULL

next:
NULL

tcache_entry Z

key: NULL

next:
NULL

a = malloc(16);
b = malloc(16);
c = malloc(32);
d = malloc(48);
e = malloc(32);
f = malloc(32);

// allocations that are not freed
// don't show up in the tcache!
x = malloc(64);
y = malloc(64);
z = malloc(64);

// later freed allocations show up
// earlier in the tcache list order
free(b);
free(a);
free(f);
free(e);
free(c);
free(d);

How did we get here?
tcache_perthread_struct Bën

counts: ...

entries: ...entry_16: &A entry_32: &C entry_48: &D

count_16: 2 count_32: 3 count_48: 1

entry_64: NULL

count_64: 0

tcache_entry A

key: Bën

next: &B

tcache_entry C

key: Bën

next: &E

tcache_entry D

key: Bën

next:
NULL

tcache_entry B

key: Bën

next:
NULL

tcache_entry E

key: Bën

next: &F

tcache_entry F

key: Bën

next:
NULL

tcache_entry X

key: NULL

next:
NULL

tcache_entry Y

key: NULL

next:
NULL

tcache_entry Z

key: NULL

next:
NULL

tcache - freeing
Each tcache_entry is actually the exact allocation that was freed! On free(),
the following happens:

Select the right "bin" based on the size:
idx = (freed_allocation_size - 1) / 16;

Check to make sure the entry hasn't already been freed (double-free):
((unsigned long*)freed_allocation)[1] == &our_tcache_perthread_struct;

Push the freed allocation to the front of the list!
((unsigned long*)freed_allocation)[0] = our_tcache_perthread_struct.entries[idx];
our_tcache_perthread_struct.entries[idx] = freed_allocation;
our_tcache_perthread_struct.count[idx]++;

Record the tcache_perthread_struct associated with the freed allocation (for
checking against double-frees)
((unsigned long*)freed_allocation)[1] = &our_tcache_perthread_struct

On allocation, the following happens:

Select the bin number based on the requested size:
idx = (requested_size - 1) / 16;

Check the appropriate cache for available entries:
if our_tcache_perthread_struct.count[idx] > 0;

Reuse the allocation in the front of the list if available:
unsigned long *to_return = our_tcache_perthread_struct.entries[idx];
tcache_perthread_struct.entries[idx] = to_return[0];
tcache_perthread_struct.count[idx]--;
return to_return;

Things that are not done:
- clearing all sensitive pointers (only key is cleared for some reason).
- checking if the next (return[0]) address makes sense

tcache - allocation

Onward!
tcache_perthread_struct Bën

counts: ...

entries: ...entry_16: &A entry_32: &C entry_48: &D

count_16: 2 count_32: 3 count_48: 1

entry_64: NULL

count_64: 0

tcache_entry A

key: &Bën

next: &B

tcache_entry C

key: &Bën

next: &E

tcache_entry D

key: &Bën

next:
NULL

tcache_entry B

key: &Bën

next:
NULL

tcache_entry E

key: &Bën

next: &F

tcache_entry F

key: &Bën

next:
NULL

malloc(16) == a

Onward!
tcache_perthread_struct Bën

counts: ...

entries: ...entry_16: &B entry_32: &C entry_48: &D

count_16: 1 count_32: 3 count_48: 1

entry_64: NULL

count_64: 0

tcache_entry A

key: NULL

next: &B

tcache_entry C

key: &Bën

next: &E

tcache_entry D

key: &Bën

next:
NULL

tcache_entry B

key: &Bën

next:
NULL

tcache_entry E

key: &Bën

next: &F

tcache_entry F

key: &Bën

next:
NULL

malloc(16) == a
malloc(32) == c
malloc(32) == e

Onward!
tcache_perthread_struct Bën

counts: ...

entries: ...entry_16: &B entry_32: &F entry_48: &D

count_16: 1 count_32: 1 count_48: 1

entry_64: NULL

count_64: 0

tcache_entry A

key: NULL

next: &B

tcache_entry C

key: NULL

next: &E

tcache_entry D

key: &Bën

next:
NULL

tcache_entry B

key: &Bën

next:
NULL

tcache_entry E

key: NULL

next: &F

tcache_entry F

key: &Bën

next:
NULL

malloc(16) == a
malloc(32) == c
malloc(32) == e
malloc(48) == d
malloc(16) == b
malloc(32) == f

Onward!
tcache_perthread_struct Bën

counts: ...

entries: ...entry_16: NULL entry_32: NULL entry_48: NULL

count_16: 0 count_32: 0 count_48: 0

entry_64: NULL

count_64: 0

tcache_entry A

key: NULL

next: &B

tcache_entry C

key: NULL

next: &E

tcache_entry D

key: NULL

next:
NULL

tcache_entry B

key: NULL

next:
NULL

tcache_entry E

key: NULL

next: &F

tcache_entry F

key: NULL

next:
NULL

malloc(16) == a
malloc(32) == c
malloc(32) == e
malloc(48) == d
malloc(16) == b
malloc(32) == f
malloc(64) == g

Onward!
tcache_perthread_struct Bën

counts: ...

entries: ...entry_16: NULL entry_32: NULL entry_48: NULL

count_16: 0 count_32: 0 count_48: 0

entry_64: NULL

count_64: 0

tcache_entry G

key: NULL

next:
NULL

tcache_entry A

key: NULL

next: &B

tcache_entry C

key: NULL

next: &E

tcache_entry D

key: NULL

next:
NULL

tcache_entry B

key: NULL

next:
NULL

tcache_entry E

key: NULL

next: &F

tcache_entry F

key: NULL

next:
NULL

Dangers of the heap - double free
Problem: Pointers to an allocation remain valid after free()ing the allocation,
and are sometimes free()d again!

Solution: New versions of glibc/ptmalloc introduced the key check.

What if we overwrite key after free()ing our allocation...

Dangers of the heap - tcache poisoning
What happens if we corrupt tcache_entry->next?

tcache - summary
tcache is:
... a caching layer for "small" allocations (<1032 bytes on amd64)
... makes a singly-linked-list using the first word of the free chunk
... very few security checks

It gets even more insane...

	Module: Dynamic Allocator Misuse
	Recap: Types of Memory
	One idea: mmap
	Smarter solution...
	Dynamic Allocators exist!
	Terminology: "The Heap"
	What does the heap do?
	How does the heap work?
	Dangers of the heap
	Here lies danger...
	Module: Dynamic Allocator Misuse
	Dangers of the heap - security vs performance
	Dangers of the heap - security vs performance
	Dangers of the heap
	Dangers of the heap: Memory Leaks
	Dangers of the heap: Use After Free
	Dangers of the heap: Memory Disclosure
	Dangers of the heap: Metadata Corruption
	Hackers are Weird: The Rise of the Houses
	The Danger of Overlapping Allocations
	Module: Dynamic Allocator Misuse
	Heap Metadata and its Corruption
	Metadata: Allocated Chunks
	Metadata: Size?
	Metadata: Overlapping metadata!
	Metadata: Freed Chunks
	Metadata: Different Caches
	Metadata: tcache Chunks
	Metadata: largebin Chunks
	Metadata: The Wilderness
	Other Allocators?
	Module: Dynamic Allocator Misuse
	Recap: Metadata Corruption Goals
	Historical: The Unlink Attack
	Historical: The Unlink Attack
	Historical: The Unlink Attack
	Historical: The Unlink Attack
	Historical: Poison Null Byte
	Historical: Poison Null Byte
	Historical: House of Force
	House of Spirit
	Miscellaneous Heapery
	Major Heap Headache: Heap Massaging
	Further reading
	슬라이드 번호 45
	Module: Dynamic Allocator Misuse
	tcache
	Interlude: what is a linked list?
	How did we get here?
	How did we get here?
	How did we get here?
	How did we get here?
	How did we get here?
	How did we get here?
	How did we get here?
	How did we get here?
	tcache - freeing
	tcache - allocation
	Onward!
	Onward!
	Onward!
	Onward!
	Onward!
	Dangers of the heap - double free
	Dangers of the heap - tcache poisoning
	tcache - summary

