Linux Fundamentals

Insu Yun

Today’s lecture
* Linux

* File system
* Permission
* File-related system calls
* File descriptors

e Process and thread
e Shell

What is Linux?

* Unix-like operating system
* Developed by Linus Torvalds

* Many distributions exist
* Centos
* Redhat
* Ubuntu 20.04 <- Our server

An operating system is software that provides

e Resource management
* Security
e Hardware abstraction

e User interface

Users

* Users are identified by a User id (a number)

* User ID ‘0" is “root” — the administrator

* Objects in the system (Processes, Files) are attached to Users
* Everything else stems from that

* All Users are defined in the file “/etc/passwd”

http://haifux.org/lectures/84-sil/users-processes-files-and-permissions/users-perms-lec.html

/etc/passwd

root : x : 0 : O :root : /root : /bin/bash
'y

A [Y

username UID GID Home Directory

Comment
password Shell Used

Historically, this file contained
password, but now moved to
/etc/shadow

https://devconnected.com/how-to-list-users-and-groups-on-linux/

Groups

e Groups are identified by a Group id - also a number.
* A Group may contain O or more Users.
* Objects in the system (Processes, Files) are attached to Groups.

* All Groups are defined in the file "/etc/group".
e Except for ‘primary Groups', which might be implicitly defined in "/etc/passwd".

http://haifux.org/lectures/84-sil/users-processes-files-and-permissions/users-perms-lec.html

/etc/group

sudo : X

I

group name | GID

password

https://devconnected.com/how-to-list-users-and-groups-on-linux/

h

. 24 . devconnected,bob

h

Users in the group

Summary: A user has
e 1 uid
* 1 gid (for primary group)

* Multiple secondary groups (in /etc/group)

vagrant@ubuntu-xenial:~$ id

u1d=1000(vagrant) gi1d=1000(vagrant) groups=1000(vagrant)

Processes have uids & gids for permission

e Real UID (uid): the user who launched the process

* Real GID (gid): the primary group of the user that launched the
process

 Effective uid (euid) & Effective gid(egid): determine what resources the
Process can access

 See later with setuid/setgid

Linux file syste

m

e A tree-based model that stores files and directories

/

|

[

elc

dev |

home

LIsr

| var |

|

jono ” mako ” cory

work I

photos

1

The Official Ubuntu Book, 7th Edition: Becoming an Ubuntu Power User

Linux file system

e Can check a list of files in the current directory using 1s command

vagrant@ubuntu- xen1 i

vagrant@ubuntu-xenial:
total 84 787,
drwxr-xr-x 13 root root
drwxr-xr-x root root
-PWXPWXP =X root root
drwxr-xr-x root root
drwxr-xr-x root root
drwxr-xr-x root root
drwxr-xr-x root root
drwxr-xr-x root root
drwxr-xr-x root root
drwxr-xr-x root root
drwxr-xr-x root root
drwxr-xr-x root root
drwxr-xr-x root root
-PWXIWXF =X root root
-FrW-rw-r-- root root
drwxr-xr-x root root

IS a current directory

o 7

IS a parent directory

init.sh
README

NFPRPNNNNNNNNNRNR o0
NN NN N NN NN N NN NN

Q: What does this

Linux file permission umber mean?

drwxr-xr-x 2 root root 4096 Jan 7 @1:37

: $ |
f OwnerH HCADNC]

File type File File
(e.g., directory) Group | Owner Group
Other

e r:read, w: write,x: executable

e Permissions are often expressed with the octal number (i.e., base 8)
e r=4 w=2,x=1
* 0.8, FWXTr—XIr—X: 755 vagrant@ubuntu-xenial:~$ id
* e.g., rWXXrwxXrwx: /77

uid=1000(vagrant) gid=1000(vagrant) groups=1000(vagrant)

Permission for a file & a directory

* rwx for a file
* r: Can read the file
e w: Can write the file
e x: Can execute the file

e rwx for a directory
* r: Can list the files in the directory
* w: Can write (e.g., create, rename, delete, modify) files in the directory
e x: Can access files in the directory

chown & chmod

* chown: change file owner and group
e Usage: chown [OPTION]... [OWNER][:[GROUP]] FILE

e Examples:
S chown root myfile
Change the owner of myfile to "root".
S chown root:staff file
Likewise, but also change its group to “staff”

 chmod: change file mode bits
e Usage: chmod MODE FILE

e Examples:
S chmod 754 myfile
Change the myfile’s permission to 754

https://linux.die.net/man/1/chown, https://linux.die.net/man/1/chmod

https://linux.die.net/man/1/chown

Special permission: setuid, setgid

12 -rwxr-sr-x 1 root tut@l-crackme 10372 Jan 7 Q1:37 [dgele<=0)4Y)

* rwxr—-8sr—x: setgid program Q: Why we use

: setgid? not setuid?
* e.g., rwsr—-xXr-x:setuid program

* setgid program changes ‘effective’ gid of its user with its gid

e Similar to rwx, special permissions have the octal number form
* setuid: 4, setgid: 2, sticky bit: 1
* The above permission would be 2755

How permission checking works

1. Check if my (i.e., process) euid == file’s uid (i.e., owner), then use
owner’s permission

2. Check if my egid is belonging to file’s group, then use group’s
permission

3. Otherwise, use other’s permission

NOTE: eu(g)id == ru(g)id except for setu(g)id programs

Questions about permissions

 uid (user id): An identifier that specifies a current user
 gid (group id): An identifier that specifies a current group

Id

uid=1000(vagrant) gid 1000(vagrant) groups=1000(vagrant)

Q: Can | read this?

4 —rw-rw-r— 1 vagrant vagrant 33 Mar 8 09:14 filel

Questions about permissions

Q: Can | read this?

$ Is —als file?

4 —rw-rw—-r— 1 root vég[ant 6 Mar 10 15:24 file2

Q: Can | read this?

-~ IS —als 711
4 —rw—-rw—r— 1 root root 5 Mar 10 15:24 file3

Q: Can | read this?
~$ Is -als filed

4 —r—r———— 1 root root 9 Mar 10 15:26 filed

Questions about permissions

e Let’s assume we have a program that reads a file
~d ./reag

THIS_IS_FILET

e Q: Can | read this?

~$ |Is —als read_file

12 —rwxrwxr—x 1 vagrant vagrant 8768 Mar 10 15:28

~$./read_file file4d

Questions about permissions

e Can | read this?

12 —rwxr—sr—x 1 vagrant vagrant 8768 Mar 10 15:28 [ERIHIE
~$./read _file filed

~$ |s —als read file
2 —rwxr=sr—=x 1 root root 8/68 Mar 10 15:28 [f=ElLIRERE:

/read_file file4

More on setgid

vagrant@ubuntu-xenial:~$ 1s -als getgid

12 -rwxr-sr-x 1 root ubuntu 8968 Jan 12 22:23 [s[dejle

tinclude <unistd.h> vagrant@ubuntu-xenial:~$ i1d -u vagrant
#include <sys/types.h> 1000
#include <stdio.h> vagrant@ubuntu-xenial:~$ id -u ubuntu
#include <stdlib.h> 1001

int main () {
// get permissions directly
printf ("uid=%d, gid=%d, euid=%d, egid=%d\n",
getuid(), getgid(), geteuid (), getegid());

// run 'id' using execve system call
if (!fork())
execl ("/usr/bin/id", "/usr/bin/id", NULL) ;

// run 'id' through shell
system(”/usr/bin/id") ; system () = fork{()

J ~ + /bin/sh —-c “COMMAND”

When we run setgid program...

vagrant@ubuntu-xenial:~$% ./getgic
uid=1000, g1d=1000, euid=1000, egid=1001

* Due to security reasons, shell (e.g., sh or bash) drops effective uid/gid

* In our challenges, you will see setregid(getegid (), getegid());
* |t allows you to invoke shell with higher privilege

* As a result, it will make you easy to exploit
(otherwise, you have to call those functions by yourself)

A special file type: symbolic (soft) link

League of
* A special file that points another file Legends

e e.g., .Ink file in Windows

° You Can Create It USIﬂg ln Command Q WithO.Ut—S, you Can create hard |Iﬂk
What's difference compared to soft link
*eg, In —s [src] [dst] or to copy of a file?
B

* Interesting property regarding security: You can create symbolic link
even you don’t have enough permission for source

* e.g., You can make symbolic link for a file even you cannot read the file, or the
file has setuid permission

Use a file system using open(), read(), write(), ...

* Linux (and other operating systems) can use its hardware resource
including files, using system calls

* 1nt open(const char *pathname, 1nt flags)
* Opens a file specified the pathname and returns a file descriptor

* ssize t read(int fd, void *buf, size t count)
* Read up to count bytes from file descriptor fd into buf

e ssize t write(int fd, const void *buf, size t count)
. Write up to count bytes to file descriptor fd from buf B

e int close(int £d):close a given file descriptor, fd

File descriptors

* An integer value used to access a file, network, or I/O operation
* In Windows, HANDLE corresponds to the file descriptor

 Special file descriptors
e O0: standard input (stdin) — Keyboard input
e 1: standard output (stdout) — Screen
e 2:standard error (stderr) — Screen and no buffering

Process management: Process and thread

* Program: an executable file that contains code and data for execution
* Process: an executing instance of a program

* Thread: an executable unit of a process
* One thread can have multiple threads

Renderer thread

- ————-
‘. GO gle O thread

Google Chrome Ul thread

Program

Process
Threads

More example

vagrant@ubuntu-xenial:~$ 1s -als /bin/sleep
32 -rwxr-xr-x 1 root root 31408 Mar 2 2017 /bin/sleep

vagrant@ubuntu-xenial :~$ /bin/sleep 120

vagrant@ubuntu-xenial:~$ ps -auxlgrep /bin/sleep
vagrant 28474 0.0 0.0 0004 644 pts/0 T 01:10 0:00 /bin/sleep 120

i

Process |ID

More example

vagrant@ubuntu-xenial:~$ cat /proc/28474/maps

00400000-00407000 r-xp 00000000 08:01 30 /bin/sleep

00606000-00607000 r--p 00000000 08:01 30 /bin/sleep

00607000-00608000 rw-p 00007000 08:01 30 /bin/sleep

00608000-00629000 rw-p 00000 00:00 @ [heap]

7ffff7a0d00o-7ffff7bcdooo 00000000 08:01 2121 /11b/x86_64-11nux-gnu/libc-2.23.

/ffff7bcd0@O-7ffff7dcd00 001c0000 :01 2121 /11b/x86_64-11inux-gnu/libc-2.23.
/ffff7dcdo@o-7ffff7dd1000 001c0000 101 2121 /11b/x86_64-11nux-gnu/libc-2.23.
7ffff7dd1000-7ffff7dd3000 001c4000 101 2121 /11b/x86_64-11nux-gnu/libc-2.23.
/Tfff7dd3000-7ffff7dd7000 00000000 :00 0

/ffff7dd7000-7ffff7dfdooo 00000000 101 2132 /11b/x86_64-11nux-gnu/1d-2.23.s0
/ffff7e51000-7ffff7fe9000 00000000 101 29254 /usr/1lib/locale/locale-archive

TTT—

Q: How many thread does this process have?
(Just guess)

Thread vs Process

code

data

files

registers

stack

thread — ¢

single-threaded process

code data files
registers registers registers
stack stack stack
4——.

— thread

multi-threaded process

Ref: https://medium.com/@yovan/os-process-thread-user-kernel-%E7%AD%86%E8%A8%98-aa6e04d35002

Thread vs Process

#include <stdio.h>
#include <unistd.h>
#include <sys/wait.h>
#include <stdlib.h>

#include <pthread.h>
#include <stdio.h>

#include <unistd.h>
#include <stdlib.h>

int global = 0; :
Tt gIoba int global = 0;

ot .
int main() { void* thread routine (void *arg) f{
int status = 0; B
global++;
if (fork() == 0) { }
In chil .
// In child process int main () {
global++; thread t thread;
exit (0); ° - ’

pthread create (&thread, NULL, thread routine, NULL);
pthread join(thread, NULL);

walt (&status) ;

printf ("3d\n", global); printf ("5d\n", global);

Create a process using fork()

e fork(): only way to create a new process
 Variants exist: clone(), vfork(), ...

 fork() creates a new process by duplicating the current process
* Copy memory including heap, code, data, and stack
* Inherits several system resources including file descriptors

Run a new program using execve()

e 1nt execve (const char *filename, char *const
argv|[], char *const envpl]);

e executes a program pointed by filename

* argv:arguments
* argv[0] points the filename that are being executed (by convention)

* envp: environment variables
* Format: KEY=VALUE (e.g., HOME=/home/vagrant)

Process layout (32bit in x86-64)

S ./hello aaaa bbbb cccc

Description Example
NULL (8-byte) NULL
File name “/home/insu/hello”

Environment variable strings “COLUMNS=238",

“LANG=en US.UTF-8",

Argument strings “/hbme/insu/hello”, “aaaa”, “bbbb”, “cccc”
Environment variables { ehv¥, env2, env3, envN, NULL }
Arguments { agfl, arg2, arg3, g4, NULL }

char* envp/[]

char* argv /(]

int argc 4

Common misconceptions

code

data

files

registers

stack

Looks like that a

thread —

thread’s stack cannot
be shared!

—

single-threaded process

code data files
registers registers registers
stack stack stack
4——.

— thread

multi-threaded process

Ref: https://medium.com/@yovan/os-process-thread-user-kernel-%E7%AD%86%E8%A8%98-aa6e04d35002

Example: sharing stacks across threads

int* ptr

= NULL;

void *threadl (void *argl) {

}

int ¢ = 0;
ptr = &c;

while (ptr != NULL); // busy waiting

printf (“c: 0x%08x\n", c);

return NULL;

void* thread2 (void *arg) {
while (ptr == NULL); // busy waiting

printf ("ptr:

sp\n", ptr);

*ptr = Oxdeadbeef;

ptr = NULL;
return NULL;

insu ~/projects $
ptr: Ox7ffff77clee4

Cc: Oxdeadbeef

* Threads share process memory
(e.g., heap, code, data, and even stack)

e Stack is just one kind of memory

 StackClash: Modifying heap from stack

* https://blog.qualys.com/vulnerabilities-
research/2017/06/19/the-stack-clash

Shell

* Acommand line interpreter for *nix platforms

* |t provides diverse functionalities
* Wildcarding (*)
e Pipelining (|)
 Variables

* You can call shell commands using system() in a C program

How system() works?
e system (”1d”) ;

e How does shell know that it needs to execute /usr/bin/1d?
e Answer: PATH environment variable

* [ype “printenv PATH”:
/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/b
in:/sbin:/bin:/usr/games:/usr/local/games:/snap
/bin

* Shell search each path until it finds the specific command

Vulnerabilityl: PATH injection

e system (”1d”) ;

* Add other location to PATH variable
e export PATH=/home/attacker/bin:SPATH
* Make a binary named “1d” in /home/attacker/bin
* Run a program that contains system (“id”)
e This will invoke my “1d” binary, not /usr/bin/id

Vulnerability2: Command injection
e system(”/bin/ls ” + input);

e Shell has many meta-characers
e e.g., ;" can represents command separator

* Thus, if input="; /bin/sh”, the above code will spawn a shell
for you

Wildcard injection

* system (”/bin/tar cf archive.tar *”);

* You can make any file for compression

1nsSu ~/tar $- Shell inserts file names as
a b c arguments!!

=

insu ~/tar $ tar cf archive.tar 2>8&1 | execve

execve("/bin/tar", ["tar", "cf", "archive.tar", "a", "b", "c"],

Wildcard injection

insu ~/tar $ -- --version

insu ~/tar $

a b ¢ --version

insu ~/tar $ cf archive.tar

tar (GNU tar) 1.29

Copyright (C) 2015 Free Software Foundation, Inc.

License GPLv3+: GNU GPL version 3 or later <http://gnu.org/licenses/gpl.html>.
This 1s free software: you are free to change and redistribute 1it.
There 1s NO WARRANTY, to the extent permitted by law.

Written by John Gilmore and Jay Fenlason.

Wildcard injection

* --checkpoint=[N]: Display progress messages every Nth record
e - ——checkpoint-action=ACTION: Run ACTION on each checkpoint

* One of its action is ‘exec’, which allows you to execute external command!

insu ~/tar $
a b ¢ '"--checkpoint=l"'" '--checkpoint-action=exec=sh’

insu ~/tar $ cf archive.tar
$ id
ul1d=1000(1insu) gi1d=1000(insu) groups=1000(insu),4(adm),24(cdrom),27(sudo),30(dip),

Shellshock

e Discovered in September 2014

* Malformed environment variables in bash allows command injection

ceenv x='() { :;}; echo vulnerable’
bash -c¢ "echo this i1is a test"

Example: Common Gateway Interface (CGl)

* Web interface to execute programs like console applications
* Frequently used in an embedded system (e.g., router, ...)

#!/bin/bash
echo “Content-Type: text/html”

echo
echo “<hl>Hello World</hl>"

< C @ localhost:8000/cgi-bin/hello.sh

Hello World

* CGl converts inputs from web into environment variables
* e.g., User-agent 2 HTTP_USER_AGENT="...”

Shellshock on CGl servers

cenv x="'"() { :;},; echo vulnerable’
bash -c¢ "echo this 1s a test"

e curl -H "User—-agent: () { :;}; echo vulnerable"
http://localhost/cgi-bin/hello.sh
* Then, HTTP USER AGENT='‘() {:;}; echo vulnerable’

bash hello.sh

Lesson: Be careful when you use shell command!

http://localhost/cgi-bin/hello.sh

	Linux Fundamentals
	Today’s lecture
	What is Linux?
	An operating system is software that provides
	Users
	/etc/passwd
	Groups
	/etc/group
	Summary: A user has
	Processes have uids & gids for permission
	Linux file system
	Linux file system
	Linux file permission
	Permission for a file & a directory
	chown & chmod
	Special permission: setuid, setgid
	How permission checking works
	Questions about permissions
	Questions about permissions
	Questions about permissions
	Questions about permissions
	More on setgid
	슬라이드 번호 23
	A special file type: symbolic (soft) link
	Use a file system using open(), read(), write(), …
	File descriptors
	Process management: Process and thread
	More example
	More example
	Thread vs Process
	Thread vs Process
	Create a process using fork()
	Run a new program using execve()
	Process layout (32bit in x86-64)
	Common misconceptions
	슬라이드 번호 36
	Shell
	How system() works?
	Vulnerability1: PATH injection
	Vulnerability2: Command injection
	Wildcard injection
	Wildcard injection
	Wildcard injection
	Shellshock
	Example: Common Gateway Interface (CGI)
	Shellshock on CGI servers

