
Linux Fundamentals
Insu Yun

Today’s lecture

• Linux

• File system
• Permission
• File-related system calls
• File descriptors

• Process and thread
• Shell

What is Linux?

• Unix-like operating system

• Developed by Linus Torvalds

• Many distributions exist
• Centos
• Redhat
• Ubuntu 20.04 <- Our server
• …

An operating system is software that provides

• Resource management

• Security

• Hardware abstraction

• User interface

• …

Users

• Users are identified by a User id (a number)

• User ID ‘0’ is “root” – the administrator

• Objects in the system (Processes, Files) are attached to Users

• Everything else stems from that

• All Users are defined in the file “/etc/passwd”

http://haifux.org/lectures/84-sil/users-processes-files-and-permissions/users-perms-lec.html

/etc/passwd

https://devconnected.com/how-to-list-users-and-groups-on-linux/

Historically, this file contained
password, but now moved to
/etc/shadow

Groups

• Groups are identified by a Group id - also a number.

• A Group may contain 0 or more Users.

• Objects in the system (Processes, Files) are attached to Groups.

• All Groups are defined in the file "/etc/group".
• Except for ‘primary Groups', which might be implicitly defined in "/etc/passwd".

http://haifux.org/lectures/84-sil/users-processes-files-and-permissions/users-perms-lec.html

/etc/group

https://devconnected.com/how-to-list-users-and-groups-on-linux/

Summary: A user has

• 1 uid

• 1 gid (for primary group)

• Multiple secondary groups (in /etc/group)

Processes have uids & gids for permission

• Real UID (uid): the user who launched the process

• Real GID (gid): the primary group of the user that launched the
process

• Effective uid (euid) & Effective gid(egid): determine what resources the
process can access

• See later with setuid/setgid

Linux file system

• A tree-based model that stores files and directories

The Official Ubuntu Book, 7th Edition: Becoming an Ubuntu Power User

Linux file system

• “.” is a current directory
• “..”is a parent directory

• Can check a list of files in the current directory using ls command

• You can get more information by typing ls -al

Linux file permission

• r: read, w: write,x: executable
• Permissions are often expressed with the octal number (i.e., base 8)

• r = 4, w = 2, x = 1
• e.g., rwxr-xr-x: 755
• e.g., rwxrwxrwx: 777

Owner

Group
Other

File type
(e.g., directory)

File
Owner

File
Group

Q: What does this
number mean?

Permission for a file & a directory

• rwx for a file
• r: Can read the file
• w: Can write the file
• x: Can execute the file

• rwx for a directory
• r: Can list the files in the directory
• w: Can write (e.g., create, rename, delete, modify) files in the directory
• x: Can access files in the directory

chown & chmod

• chown: change file owner and group
• Usage: chown [OPTION]... [OWNER][:[GROUP]] FILE
• Examples:

$ chown root myfile
Change the owner of myfile to "root".

$ chown root:staff file
Likewise, but also change its group to “staff”

• chmod: change file mode bits
• Usage: chmod MODE FILE
• Examples:

$ chmod 754 myfile
Change the myfile’s permission to 754

https://linux.die.net/man/1/chown, https://linux.die.net/man/1/chmod

https://linux.die.net/man/1/chown

Special permission: setuid, setgid

• rwxr-sr-x: setgid program
• e.g., rwsr-xr-x: setuid program

• setgid program changes ‘effective’ gid of its user with its gid
• Similar to rwx, special permissions have the octal number form

• setuid: 4, setgid: 2, sticky bit: 1
• The above permission would be 2755

Q: Why we use
setgid? not setuid?

How permission checking works

1. Check if my (i.e., process) euid == file’s uid (i.e., owner), then use
owner’s permission

2. Check if my egid is belonging to file’s group, then use group’s
permission

3. Otherwise, use other’s permission

NOTE: eu(g)id == ru(g)id except for setu(g)id programs

Questions about permissions

• uid (user id): An identifier that specifies a current user
• gid (group id): An identifier that specifies a current group

Q: Can I read this?

O

Questions about permissions

Q: Can I read this?

Q: Can I read this?

Q: Can I read this?

O

O

X

Questions about permissions

• Let’s assume we have a program that reads a file

• Q: Can I read this?

X

Questions about permissions

• Can I read this?

• Can I read this?

• Now I can read it!

X

More on setgid
#include <unistd.h>
#include <sys/types.h>
#include <stdio.h>
#include <stdlib.h>

int main() {
// get permissions directly
printf("uid=%d, gid=%d, euid=%d, egid=%d\n",
getuid(), getgid(), geteuid(), getegid());

// run 'id' using execve system call
if (!fork())
execl("/usr/bin/id", "/usr/bin/id", NULL);

// run 'id' through shell
system(”/usr/bin/id");

}
system() = fork()

+ /bin/sh –c “COMMAND”

• Due to security reasons, shell (e.g., sh or bash) drops effective uid/gid

• In our challenges, you will see setregid(getegid(), getegid());
• It allows you to invoke shell with higher privilege
• As a result, it will make you easy to exploit

(otherwise, you have to call those functions by yourself)

When we run setgid program…

A special file type: symbolic (soft) link

• A special file that points another file
• e.g., .lnk file in Windows

• You can create it using ln command
• e.g., ln –s [src] [dst]

• Interesting property regarding security: You can create symbolic link
even you don’t have enough permission for source

• e.g., You can make symbolic link for a file even you cannot read the file, or the
file has setuid permission

Q: Without –s, you can create hard link.
What’s difference compared to soft link
or to copy of a file?

Use a file system using open(), read(), write(), …

• Linux (and other operating systems) can use its hardware resource
including files, using system calls

• int open(const char *pathname, int flags)
• Opens a file specified the pathname and returns a file descriptor

• ssize_t read(int fd, void *buf, size_t count)
• Read up to count bytes from file descriptor fd into buf

• ssize_t write(int fd, const void *buf, size_t count)
• Write up to count bytes to file descriptor fd from buf

• int close(int fd): close a given file descriptor, fd

File descriptors

• An integer value used to access a file, network, or I/O operation
• In Windows, HANDLE corresponds to the file descriptor

• Special file descriptors
• 0: standard input (stdin) – Keyboard input
• 1: standard output (stdout) – Screen
• 2: standard error (stderr) – Screen and no buffering

Process management: Process and thread

• Program: an executable file that contains code and data for execution
• Process: an executing instance of a program
• Thread: an executable unit of a process

• One thread can have multiple threads

Program
Process

Renderer thread

IO thread

UI thread

…

Threads

More example

Process ID

More example

Q: How many thread does this process have?
(Just guess)

Thread vs Process

Ref: https://medium.com/@yovan/os-process-thread-user-kernel-%E7%AD%86%E8%A8%98-aa6e04d35002

Thread vs Process

#include <stdio.h>
#include <unistd.h>
#include <sys/wait.h>
#include <stdlib.h>

int global = 0;

int main() {
int status = 0;

if (fork() == 0) {
// In child process...
global++;
exit(0);

}

wait(&status);
printf("%d\n", global);

}

#include <pthread.h>
#include <stdio.h>
#include <unistd.h>
#include <stdlib.h>

int global = 0;

void* thread_routine(void *arg) {
global++;

}

int main(){
pthread_t thread;
pthread_create(&thread, NULL, thread_routine, NULL);
pthread_join(thread, NULL);

printf("%d\n", global);
}

Create a process using fork()

• fork(): only way to create a new process
• Variants exist: clone(), vfork(), …

• fork() creates a new process by duplicating the current process
• Copy memory including heap, code, data, and stack
• Inherits several system resources including file descriptors

Run a new program using execve()

• int execve(const char *filename, char *const
argv[], char *const envp[]);

• executes a program pointed by filename

• argv: arguments
• argv[0] points the filename that are being executed (by convention)

• envp: environment variables
• Format: KEY=VALUE (e.g., HOME=/home/vagrant)

Process layout (32bit in x86-64)
$./hello aaaa bbbb cccc

Description Example
NULL (8-byte) NULL

File name “/home/insu/hello”

Environment variable strings “COLUMNS=238”, “LANG=en_US.UTF-8”, …

Argument strings “/home/insu/hello”, “aaaa”, “bbbb”, “cccc”

… …

Environment variables { env1, env2, env3, …, envN, NULL }

Arguments { arg1, arg2, arg3, arg4, NULL }

… …

char* envp[]

char* argv[]

int argc 4

Common misconceptions

Ref: https://medium.com/@yovan/os-process-thread-user-kernel-%E7%AD%86%E8%A8%98-aa6e04d35002

Looks like that a
thread’s stack cannot
be shared!

• Threads share process memory
(e.g., heap, code, data, and even stack)

• Stack is just one kind of memory

• StackClash: Modifying heap from stack
• https://blog.qualys.com/vulnerabilities-

research/2017/06/19/the-stack-clash

Example: sharing stacks across threads
int* ptr = NULL;

void *thread1(void *arg1) {
int c = 0;
ptr = &c;
while (ptr != NULL); // busy waiting

printf(”c: 0x%08x\n", c);
return NULL;

}

void* thread2(void *arg) {
while (ptr == NULL); // busy waiting
printf(”ptr: %p\n", ptr);

*ptr = 0xdeadbeef;
ptr = NULL;
return NULL;

}

Shell

• A command line interpreter for *nix platforms

• It provides diverse functionalities
• Wildcarding (*)
• Pipelining (|)
• Variables
• …

• You can call shell commands using system() in a C program

How system() works?

• system(”id”);

• How does shell know that it needs to execute /usr/bin/id?
• Answer: PATH environment variable

• Type “printenv PATH”:
/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/b
in:/sbin:/bin:/usr/games:/usr/local/games:/snap
/bin

• Shell search each path until it finds the specific command

Vulnerability1: PATH injection

• system(”id”);

• Add other location to PATH variable
• export PATH=/home/attacker/bin:$PATH
• Make a binary named “id ” in /home/attacker/bin
• Run a program that contains system(“id”)
• This will invoke my “id ” binary, not /usr/bin/id

Vulnerability2: Command injection

• system(”/bin/ls ” + input);

• Shell has many meta-characers
• e.g., “;” can represents command separator

• Thus, if input=”; /bin/sh”, the above code will spawn a shell
for you

Wildcard injection

• system(”/bin/tar cf archive.tar *”);

• You can make any file for compression

Shell inserts file names as
arguments!!

Wildcard injection

Wildcard injection

• --checkpoint=[N]: Display progress messages every Nth record
• -- --checkpoint-action=ACTION: Run ACTION on each checkpoint

• One of its action is ‘exec’, which allows you to execute external command!

Shellshock

• Discovered in September 2014

• Malformed environment variables in bash allows command injection
• env x='() { :;}; echo vulnerable’

bash -c "echo this is a test"

Example: Common Gateway Interface (CGI)

• Web interface to execute programs like console applications
• Frequently used in an embedded system (e.g., router, …)

• CGI converts inputs from web into environment variables
• e.g., User-agent HTTP_USER_AGENT=“….”

#!/bin/bash
echo “Content-Type: text/html”
echo
echo “<h1>Hello World</h1>”

Shellshock on CGI servers

• env x='() { :;}; echo vulnerable’
bash -c "echo this is a test"

• curl -H "User-agent: () { :;}; echo vulnerable"
http://localhost/cgi-bin/hello.sh

• Then, HTTP_USER_AGENT=‘() {:;}; echo vulnerable’
bash hello.sh

Lesson: Be careful when you use shell command!

http://localhost/cgi-bin/hello.sh

	Linux Fundamentals
	Today’s lecture
	What is Linux?
	An operating system is software that provides
	Users
	/etc/passwd
	Groups
	/etc/group
	Summary: A user has
	Processes have uids & gids for permission
	Linux file system
	Linux file system
	Linux file permission
	Permission for a file & a directory
	chown & chmod
	Special permission: setuid, setgid
	How permission checking works
	Questions about permissions
	Questions about permissions
	Questions about permissions
	Questions about permissions
	More on setgid
	슬라이드 번호 23
	A special file type: symbolic (soft) link
	Use a file system using open(), read(), write(), …
	File descriptors
	Process management: Process and thread
	More example
	More example
	Thread vs Process
	Thread vs Process
	Create a process using fork()
	Run a new program using execve()
	Process layout (32bit in x86-64)
	Common misconceptions
	슬라이드 번호 36
	Shell
	How system() works?
	Vulnerability1: PATH injection
	Vulnerability2: Command injection
	Wildcard injection
	Wildcard injection
	Wildcard injection
	Shellshock
	Example: Common Gateway Interface (CGI)
	Shellshock on CGI servers

