
Stack protection
Insu Yun

Most of materials from CS419/579 Cyber Attacks & Defense in OSU

Today’s lecture

• Understand spatial memory safety

• Understand SoftBound

• Understand stack cookie

• Understand weakness of stack cookie

COOKIEBUFFER

Stack Buffer Overflow + Run Shellcode

BUFFER

BUFFER

BUFFER

SAVED %ebp

RETURN ADDR

AAAA

BBBB

CCCC

DDDD

EEEE

ADDR of
SHELLCODE

How to defend against stack overflow?

• Prevent buffer overflow!
• A direct defense
• Could be accurate but could be slow..

• Make exploit hard!
• An indirect defense
• Could be inaccurate but could be fast..

Exploit Mitigation
Stack cookie, DEP, ASLR, etc.

Softbound, etc.

Softbound: Bound checking for C!

Memory Safety = Temporal Safety (e.g., use-after-free)
+ Spatial Safety (e.g., buffer overflow)

In Proceedings of
Programming Language Design and Implementation
(PLDI) 2009

Spatial safety

• Guarantee that an access does not go
1) behind the Base and
2) over the Bound

a

Base Bounda[-1] a[512]

Softbound: Bounds checking

• A FAT pointer
• char *a

• char *a_base;
• char *a_bound;

• Allocation
• a = (char*)malloc(512)

• a_base = a;
• a_bound = a+512

• Access must be between [a_base, a_bound)
• a[0], a[1], a[2], …, and a[511] are OK
• a[512] NOT OK
• a[-1] NOT OK

A

Base Bounda[-1] a[512]

Softbound: Bounds checking

• Propagation
• char *b = a;

• b_base = a_base;
• b_bound = a_bound;

• char *c = &b[2];
• c_base = b_base;
• c_bound = b_bound;

A

Base Bounda[-1] a[512]

B C

Softbound: Bounds checking

• Propagation
• char *c = &b[2];

• c_base = b_base;
• c_bound = b_bound;

• c[1] = ‘a’;
• c== b+2 == a+2
• c+1 == b+3 == a+3
• c_base <= c+1 && c+1 < c_bound

• c[510] = ‘a’;
• c == b+2 == a+2
• c+510 == b+510+2 == a+510+2 == a+512
• c_base <= c+510 but c+510 >= c_bound
• Disallow write!

A

Base Bounda[-1] a[512]

B C

Softbound: Bounds checking

• Buffer?
• strcpy(c, “A”*510)

• When copying 510th character:
• c[510] = ’A’;

• c+510 > c_bound (c+510 == a+512 > bound…)
• Detect buffer overrun!

• This is how Java and other languages (e.g., rust) protect buffer overrun
• Even for std::vector in C++

In Proceedings of
Programming Language Design and Implemenetation
(PLDI) 2009

Drawbacks

• +2x overhead on storing a pointer
• char *a

• char *a_base;
• char *a_bound;

• +2x overhead on assignment
• char *b = a;

• b_base = a_base;
• b_bound = a_bound;

• +2 comparisons added on access
• c[i]

• if(c+i >= c_base)
• if(c+i < c_bound)

Many other problems…
Use more cache
More TLBs
etc….

Security vs. Performance

• 100% Buffer Overflow Free
• You pay +200% Performance Overhead
• Think about the economy…

An Economic Defense: Stack Cookie

• A defense specific to sequential stack overflow

• On a function call
• cookie = some_random_value

• Before the function returns
• if(cookie != some_random_value)

printf(“Your stack is smashed\n”);

COOKIE

BUFFER

BUFFER

BUFFER

SAVED %ebp

RETURN ADDR

Stack Cookie: Attack Example

• strcpy(buffer, “AAAABBBBCCCCDDDDEEEE\x35\x45\x04\x08”)

• On a function call
• cookie = some_random_value

• Before a function returns
• if(cookie != some_random_value)

printf(“Your stack is smashed\n”);

COOKIE

BUFFER

BUFFER

BUFFER

SAVED %ebp

RETURN ADDR

AAAA

BBBB

CCCC

DDDD

EEEE

0x8044535 RET

Cookie

COOKIE

BUFFER

BUFFER

BUFFER

SAVED %ebp

RETURN ADDR

In Proceedings of
The 7th USENIX Security Symposium (1998)

Stack Cookie

Cookie stored in -0xc(%ebp)

Get canary from %gs

Store canary at ebp-c

Clear canary in %eax

Get canary in stack
Xor that with value in %gs

GCC ProPolice

Stack Cookie in gcc (ProPolice)

Cookie stored in -0xc(%ebp)

https://tc.gts3.org/cs6265/2022/_static/tut.pdf

Stack Cookie: Overhead

• 2 memory move
• +1 for store, +1 for read

• 1 compare

• Per each function call

• 1~5% overhead
Benchmark:
SPECint, SPECfloat

Stack Cookie: Weaknesses

• Effective for common mistakes
• strcpy/memcpy
• read/scanf
• Missing bound check in a for loop

• But can only block sequential overflow

• What if buffer[24] = 0xaa?

COOKIE

BUFFER

BUFFER

BUFFER

SAVED %ebp

RETURN ADDRaa

Stack Cookie: Weaknesses

• Fail if attacker can guess the cookie value
• strcpy(buf, “AAAABBBBCCCC\x44\x33\x22\x11EEEE…”)
• (stack-cookie-1)

• -> Use a random value for a cookie!
• Is rand() safe?

• See https://www.includehelp.com/c-programs/guess-a-random-number.aspx

0x11223344

BUFFER

BUFFER

BUFFER

SAVED %ebp

RETURN ADDR

AAAA

BBBB

CCCC

EEEE

0x8044535 RET

Cookie

https://www.includehelp.com/c-programs/guess-a-random-number.aspx

Stack Cookie: Weaknesses

• Security in 32-bit Random Cookie
• One chance over 232 (4.2 billion) trial
• Seems super secure!

• Fail if attacker can read the cookie value…

• Maybe you can’t read %gs:0x14
• But, what about -0xc(%ebp)?

0x83ec5589

BUFFER

BUFFER

BUFFER

SAVED %ebp

RETURN ADDR RET

Cookie

Stack Cookie: Weaknesses

• Check when we return

-> Do something bad before return

0x83ec5589

BUFFER

BUFFER

BUFFER

SAVED %ebp

RETURN ADDR RET

Cookie

Stack Cookie: Weaknesses

• Random becomes non-random if fork()-ed..

0x83ec5589

BUFFER

BUFFER

BUFFER

SAVED %ebp

RETURN ADDR RET

Cookie0x83ec5589

BUFFER

BUFFER

BUFFER

SAVED %ebp

RETURN ADDR RET

Cookie fork()!

Stack Cookie: Weaknesses

• Servers…

0x83ec5589

BUFFER

BUFFER

BUFFER

SAVED %ebp

RETURN ADDR

0x83ec5589

BUFFER

BUFFER

BUFFER

SAVED %ebp

RETURN ADDR fork()!

0x83ec5589

BUFFER

BUFFER

BUFFER

SAVED %ebp

RETURN ADDR

fork()!
0x83ec5589

BUFFER

BUFFER

BUFFER

SAVED %ebp

RETURN ADDR

fork()!

Why?

Stack Cookie: Bypassing ProPolice

• Assumption
• A server program contains a sequential buffer overflow vulnerability
• A server program uses fork()
• A server program let the attacker know if it detected stack smashing or not

• E.g., an error message, “stack smashing detected”, etc.

Stack Cookie: Bypassing ProPolice

• Attack
• Try to guess only the last byte of the cookie
• 0x00 ~ 0xff (256 trials)

• Result
• Stack smashing detected on

• 00, 01, 02, 03, …, 0x88
• When testing 0x89

• No smashing and return correctly

0x83ec5589

BUFFER

BUFFER

BUFFER

SAVED %ebp

RETURN ADDR

AAAA

BBBB

CCCC

00010289

0x83ec5589

Stack Cookie: Bypassing ProPolice

• Attack
• Try to guess the second last byte of the cookie
• 0x00 ~ 0xff (256 trials)

• Result
• Stack smashing detected on

• 00, 01, 02, 03, …, 0x54
• When testing 0x55

• No smashing and return correctly

0x83ec5589

BUFFER

BUFFER

BUFFER

SAVED %ebp

RETURN ADDR

AAAA

BBBB

CCCC

8900010255

0x83ec5589

Stack Cookie: Bypassing ProPolice

• An easy brute force attack
• Max 256 trials to match 1 byte value
• Move forward if found the value

• In 32-bit: 4 * 256 = max 1,024 trials
• In 64-bit: 8 * 256 = max 2,048 trials

Stack Cookie: Weaknesses

• Random becomes non-random if fork()-ed..

0x83ec5589

BUFFER

BUFFER

BUFFER

SAVED %ebp

RETURN ADDR RET

Cookie0x83ec5589

BUFFER

BUFFER

BUFFER

SAVED %ebp

RETURN ADDR RET

Cookie fork()!

CVE-2013-2028: nginx stack buffer overflow

• Exploitation on x64:
• The problem of stack cookie/carnary

can be overcome easily by brute-
forcing byte by byte. If we send an
extra byte and a worker process
crashes, it will return nothing thus we
know our cookie value is wrong, we
try another value until we receive
some output.

• Then we need to bypass ASLR and DEP.
The exploitation for 32-bit in the
metasploit module won’t work, since
it will bruteforce the libc address and
it’s not feasible given the large
address space in x64.

	Stack protection
	Today’s lecture
	Stack Buffer Overflow + Run Shellcode
	How to defend against stack overflow?
	Softbound: Bound checking for C!
	Spatial safety
	Softbound: Bounds checking
	Softbound: Bounds checking
	Softbound: Bounds checking
	Softbound: Bounds checking
	슬라이드 번호 11
	Drawbacks
	슬라이드 번호 13
	Security vs. Performance
	An Economic Defense: Stack Cookie
	Stack Cookie: Attack Example
	슬라이드 번호 17
	Stack Cookie
	Stack Cookie in gcc (ProPolice)
	슬라이드 번호 20
	Stack Cookie: Overhead
	Stack Cookie: Weaknesses
	Stack Cookie: Weaknesses
	Stack Cookie: Weaknesses
	Stack Cookie: Weaknesses
	Stack Cookie: Weaknesses
	Stack Cookie: Weaknesses
	Stack Cookie: Bypassing ProPolice
	Stack Cookie: Bypassing ProPolice
	Stack Cookie: Bypassing ProPolice
	Stack Cookie: Bypassing ProPolice
	Stack Cookie: Weaknesses
	CVE-2013-2028: nginx stack buffer overflow

