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Today’s lecture

• Understand spatial memory safety

• Understand SoftBound

• Understand stack cookie

• Understand weakness of stack cookie
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How to defend against stack overflow?

• Prevent buffer overflow!
• A direct defense
• Could be accurate but could be slow..

• Make exploit hard!
• An indirect defense
• Could be inaccurate but could be fast..

Exploit Mitigation
Stack cookie, DEP, ASLR, etc.

Softbound, etc.



Softbound: Bound checking for C!

Memory Safety = Temporal Safety (e.g., use-after-free) 
+ Spatial Safety (e.g., buffer overflow)

In Proceedings of
Programming Language Design and Implementation
(PLDI) 2009



Spatial safety

• Guarantee that an access does not  go 
1) behind the Base  and 
2) over the Bound

a

Base Bounda[-1] a[512]



Softbound: Bounds checking

• A FAT pointer
• char *a

• char *a_base;
• char *a_bound;

• Allocation
• a = (char*)malloc(512)

• a_base = a;
• a_bound = a+512

• Access must be between [a_base, a_bound)
• a[0], a[1], a[2], …, and a[511] are OK
• a[512] NOT OK 
• a[-1]    NOT OK

A

Base Bounda[-1] a[512]



Softbound: Bounds checking

• Propagation
• char *b = a;

• b_base = a_base;
• b_bound = a_bound;

• char *c = &b[2];
• c_base = b_base;
• c_bound = b_bound;
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Softbound: Bounds checking

• Propagation
• char *c = &b[2];

• c_base = b_base;
• c_bound = b_bound;

• c[1] = ‘a’;
• c== b+2 == a+2
• c+1 == b+3 == a+3
• c_base <= c+1 && c+1 < c_bound

• c[510] = ‘a’;
• c == b+2 == a+2
• c+510 == b+510+2 == a+510+2 == a+512
• c_base <= c+510 but c+510 >= c_bound
• Disallow write!
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Softbound: Bounds checking

• Buffer?
• strcpy(c, “A”*510)

• When copying 510th character:
• c[510] = ’A’;

• c+510 > c_bound (c+510 == a+512 > bound…)
• Detect buffer overrun!

• This is how Java and other languages (e.g., rust) protect buffer overrun
• Even for std::vector in C++



In Proceedings of
Programming Language Design and Implemenetation
(PLDI) 2009



Drawbacks

• +2x overhead on storing a pointer
• char *a

• char *a_base;
• char *a_bound;

• +2x overhead on assignment
• char *b = a;

• b_base = a_base;
• b_bound = a_bound;

• +2 comparisons added on access
• c[i]

• if(c+i >= c_base)
• if(c+i < c_bound)

Many other problems…
Use more cache
More TLBs
etc….





Security vs. Performance

• 100% Buffer Overflow Free
• You pay +200% Performance Overhead
• Think about the economy…



An Economic Defense: Stack Cookie

• A defense specific to sequential stack overflow

• On a function call
• cookie = some_random_value

• Before the function returns
• if(cookie != some_random_value)

printf(“Your stack is smashed\n”);
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Stack Cookie: Attack Example

• strcpy(buffer, “AAAABBBBCCCCDDDDEEEE\x35\x45\x04\x08”)

• On a function call
• cookie = some_random_value

• Before a function returns
• if(cookie != some_random_value)

printf(“Your stack is smashed\n”);
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In Proceedings of
The 7th USENIX Security Symposium (1998)



Stack Cookie

Cookie stored in -0xc(%ebp)

Get canary from %gs

Store canary at ebp-c

Clear canary in %eax

Get canary in stack 
Xor that with value in %gs

GCC ProPolice



Stack Cookie in gcc (ProPolice)

Cookie stored in -0xc(%ebp)



https://tc.gts3.org/cs6265/2022/_static/tut.pdf



Stack Cookie: Overhead

• 2 memory move
• +1 for store, +1 for read

• 1 compare

• Per each function call

• 1~5% overhead
Benchmark: 
SPECint, SPECfloat



Stack Cookie: Weaknesses

• Effective for common mistakes
• strcpy/memcpy
• read/scanf
• Missing bound check in a for loop

• But can only block sequential overflow

• What if buffer[24] = 0xaa?
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Stack Cookie: Weaknesses

• Fail if attacker can guess the cookie value
• strcpy(buf, “AAAABBBBCCCC\x44\x33\x22\x11EEEE…”)
• (stack-cookie-1)

• -> Use a random value for a cookie!
• Is rand() safe?

• See https://www.includehelp.com/c-programs/guess-a-random-number.aspx
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Stack Cookie: Weaknesses

• Security in 32-bit Random Cookie
• One chance over 232 (4.2 billion) trial
• Seems super secure!

• Fail if attacker can read the cookie value…

• Maybe you can’t read %gs:0x14
• But, what about -0xc(%ebp)?
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Stack Cookie: Weaknesses

• Check when we return

-> Do something bad before return
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Stack Cookie: Weaknesses

• Random becomes non-random if fork()-ed..
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Stack Cookie: Weaknesses

• Servers…
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Stack Cookie: Bypassing ProPolice

• Assumption
• A server program contains a sequential buffer overflow vulnerability
• A server program uses fork()
• A server program let the attacker know if it detected stack smashing or not

• E.g., an error message, “stack smashing detected”, etc.



Stack Cookie: Bypassing ProPolice

• Attack
• Try to guess only the last byte of the cookie
• 0x00 ~ 0xff (256 trials)

• Result
• Stack smashing detected on

• 00, 01, 02, 03, …, 0x88
• When testing 0x89

• No smashing and return correctly
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Stack Cookie: Bypassing ProPolice

• Attack
• Try to guess the second last byte of the cookie
• 0x00 ~ 0xff (256 trials)

• Result
• Stack smashing detected on

• 00, 01, 02, 03, …, 0x54
• When testing 0x55

• No smashing and return correctly
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Stack Cookie: Bypassing ProPolice

• An easy brute force attack
• Max 256 trials to match 1 byte value
• Move forward if found the value

• In 32-bit: 4 * 256 = max 1,024 trials
• In 64-bit: 8 * 256 = max 2,048 trials



Stack Cookie: Weaknesses

• Random becomes non-random if fork()-ed..
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CVE-2013-2028: nginx stack buffer overflow

• Exploitation on x64:
• The problem of stack cookie/carnary

can be overcome easily by brute-
forcing byte by byte. If we send an 
extra byte and a worker process 
crashes, it will return nothing thus we 
know our cookie value is wrong, we 
try another value until we receive 
some output.

• Then we need to bypass ASLR and DEP. 
The exploitation for 32-bit in the 
metasploit module won’t work, since 
it will bruteforce the libc address and 
it’s not feasible given the large 
address space in x64.
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