
Stack protection #2
Insu Yun

Today’s lecture

• Understand how to exploit arbitrary write

• Understand other issues in stack canary

• Understand shadow stack

An Economic Defense: Stack Cookie

• A defense specific to sequential stack overflow

• On a function call
• cookie = some_random_value

• Before the function returns
• if(cookie != some_random_value)

printf(“Your stack is smashed\n”);

COOKIE

BUFFER

BUFFER

BUFFER

SAVED %ebp

RETURN ADDR

Exploiting arbitrary write

• How can you exploit a vulnerability that allows you to write arbitrary
memory with arbitrary content?

• i.e., arbitrary write
• One of the most powerful exploit primitives that we can have

• One way would be writing a return address as usual
• Your exploit is not reliable (i.e., hard to reproduce)
• A return address is not stable; it depends on your file name, environment

variables, arguments, …

Example

int main() {
intptr_t *ptr, value;
read(0, &ptr, sizeof(ptr));
read(0, &value, sizeof(value));
*ptr = value;

puts(”Hello World”);
}

How can we change eip =
0x41414141?

0. .dtors?

• If you check online materials, you might see .dtors
• .dtors is a list of functions that are called after exit()
• Overwriting .dtors entry makes you to. control your program counter

http://phrack.org/issues/66/6.html

0. .dtors?

• It had been extensively used in exploiting arbitrary write, but it is no
longer available

• .dtors is replaced with .fini_array
• .fini_array is read-only

• Remember: no .dtors anymore!

1. GOT (Global Offset Table)

• Procedure Linkage Table (PLT)
• Stubs used to load dynamically linked functions

1. GOT (Global Offset Table)

• PLT stub calls a function in its GOT entry

1. GOT (Global Offset Table)

struct link_map*: A data structure
for shared objects

_dl_runtime_resolve(link_map*, offset):
Lazily loads a function address based on offset

1. GOT (Global Offset Table)

• __dl_runtime_resolve
1. According to offset, get a function name in an ELF binary (e.g., puts)
2. Based on the function name, get its address
3. Update GOT with the address and call the function
• This mechanism also can be used in attack: return_to_dl attack

1. GOT (Global Offset Table)

No more lookup again!

1. GOT (Global Offset Table)

from pwn import *
p = gdb.debug('./aaw’)
puts@got
p.write(p32(0x804a014))
p.write("AAAA")
p.interactive()

RELRO: Relocation Read-Only (RELRO)

• A security mitigation which makes some binary sections read-only

• Partial RELRO
• An (old) default setting in GCC
• No difference in attacks

• Full RELRO
• Prevent GOT overwrite
• Disable lazy loading (i.e, bind now)

• Resolve all dynamic functions and make GOT read-only

Bypass: LIBC is not FULL RELRO

e.g., puts -> __strlen_avx2@GOT (in 64bit)

https://github.com/nobodyisnobody/docs/tree/main/code.execution.on.last.libc/

2. malloc/free hooks

• e.g., __malloc_hook, __free_hook: Called before and after malloc()
and free()

• __malloc_hook(size)
• __free_hook(void*) int main() {

intptr_t *ptr, value;
read(0, &ptr, sizeof(ptr));
read(0, &value, sizeof(value));
*ptr = value;

puts(”Hello World”);
}Unfortunately, no

malloc or free…?

2. malloc/free hooks

• Set breakpoint before calling puts & Run
• Set breakpoint on malloc() puts() uses malloc!

(for allocating buffer)

2. malloc/free hooks

from pwn import *
p = gdb.debug('./aaw’)
p.write(p32(0xf7f95788))
p.write("AAAA")
p.interactive()

2. malloc/free hooks

https://aidencom.tistory.com/1091

3. __atexit() handlers

int atexit(void (*function)(void));
• Registers the given function to be called at normal process termination, either

via exit(3) or via return from the program's main()

• How is it implemented?
• __exit_funcs: a linked list of atexit handlers
• atexit handler (struct exit_function) contains a function pointer
• If we can corrupt it, then we can call this function after program terminates

3. __atexit() handlers

• PTR_MANGLE: Mitigation for __atexit() handlers
• Same mechanism has been applied for __malloc_hook() and __free_hook() in

the recent libc (but not ours)

• Idea: Using a random secret, modify a pointer
• Without leaking the secret, the pointer cannot be changeable
• If you have a more powerful primitive (e.g., arbitrary read), you can exploit it

Q: Why do we need
rotation?

https://aidencom.tistory.com/1091

4. _rtld_global (< glibc v2.34)

void
_dl_fini (void)
{

...
#ifdef SHARED
int do_audit = 0;

again:
#endif
for (Lmid_t ns = GL(dl_nns) - 1; ns >= 0; --ns)
{
/* Protect against concurrent loads and unloads. */
__rtld_lock_lock_recursive (GL(dl_load_lock));

-> &_rtld_global._dl_rtld_lock_recursive(
&_rtld_global._dl_load_lock.mutex);

4. _rtld_global (< glibc v2.34)

from pwn import *
p = gdb.debug('./aaw’)
p.write(p32(0xf7ffd874))
p.write("AAAA")
p.interactive()

• rtld_global._dl_rtld_lock_recursive system
• rtld_global._dl_load_lock “/bin/sh\x00”

4. rtld_global (>= glibc v2.34)

• Patch: _dl_rtld_lock_recursive is not used anymore

4. rtld_global (>= glibc v2.34)

• House of banana: hijack dl_ns array (link_map)

• https://abf1ag.github.io/2021/12/06/house-of-banana/
• You’ll need a translator to read the post

https://abf1ag.github.io/2021/12/06/house-of-banana/

5. Other function pointers

• Many programs contain function pointers

• If you can corrupt this, then it is sufficient to control your pc

• One of the example FILE* structure (e.g., fopen)
• It contains virtual function table for supporting polymorphism
• FILE* is more complex than you can imagine
• e.g., FSOP: File structure oriented programming

• Play with FILE Structure Yet Another Binary Exploitation Technique in HITB2018

struct FILE

FSOP (<= glibc-2.23)

• No validation on file structure  overwrite vtable pointer

_flags
_IO_read_ptr

…
_IO_FILE* _chain

…
fake vtable ptr
(_IO_jump_t*)

FSOP (<= glibc-2.23)

• FSOP using _chain and fake vtable ptrs

_IO_list_all

_flags
_IO_read_ptr

…
_IO_FILE* _chain

…
_IO_JUMP_t* vtable

_flags
_IO_read_ptr

…
_IO_FILE* _chain

…
fake vtable ptr 1

_flags
_IO_read_ptr

…
_IO_FILE* _chain

…
fake vtable ptr 2

evil func 1
evil func 2

…

evil func 3
evil func 4

…

FSOP (> glibc-2.24)

• No validation on file structure  overwrite vtable pointer
• Check: vtable ptr should be within the range of __libc_IO_vtables

FSOP (> glibc-2.24)

• No validation on file structure  overwrite vtable pointer
• Bypass: use functions that uses function pointers outside the vtable

• e.g., _IO_str_overflow
• Patched: these unchecked pointers are removed (glibc-2.28)

FSOP (>= glibc-2.28)

• House of apple: exploit unchecked _wide_data

• https://bbs.kanxue.com/thread-273418.htm
• You’ll need a translator to read the post

https://bbs.kanxue.com/thread-273418.htm

For more information

• https://github.com/nobodyisnobody/docs/tree/main/code.execution.
on.last.libc/

An Economic Defense: Stack Cookie

• A defense specific to sequential stack overflow

• On a function call
• cookie = some_random_value

• Before the function returns
• if(cookie != some_random_value)

printf(“Your stack is smashed\n”);

COOKIE

BUFFER

BUFFER

BUFFER

SAVED %ebp

RETURN ADDR

Notify your buffer overflow

• In Ubuntu 18.04 (My machine)

• In Ubuntu 16.04 (Our server)

• Why does this change happen??

Think carefully when you design a mitigation

• Q: Can this file name be corrupted?
• A: Yes it can. It is stored in stack!

• Q: If it can, what’s the consequence?
• A: You can read a content of arbitrary memory (i.e., arbitrary read)
• So, with stack overflow, you can still get arbitrary read

• So, it is patched now! (CVE-2010-3192)

Alterative stack protection: Shadow stack

+ Not vulnerable to
information disclosure
+ More secure with
additional protection for
shadow stack
- Performance overhead
- Backward compatibility

Ref: The Performance Cost of Shadow Stacks and Stack Canaries, AsiaCCS15

Trying to adopt shadow stack

• Intel designed a new set of instructions with Control-flow Enforcement
Technology (CET)

• CALL/RET will copy its return address into shadow stack
• If a return address does not match with its shadow, then exception!

• Microsoft adopted CET from Windows 10 (20H1)
• Linux CET patch (2020. 12. 09)
• …

Control-flow Enforcement Technology (CET)

• Two components
• Shadow stack (SHSTK)
• Indirect Branch Tracking (IBT)

• Indirect Branch Tracking
• All indirect branch targets must start with ENDBR64/ENDBR32

• (ENDBR64/ENDBR32 is NOP on non-CET processors)

• Defend against ROP (Return oriented programming) & JOP (Jump
oriented programming)

	Stack protection #2
	Today’s lecture
	An Economic Defense: Stack Cookie
	Exploiting arbitrary write
	Example
	0. .dtors?
	0. .dtors?
	1. GOT (Global Offset Table)
	1. GOT (Global Offset Table)
	1. GOT (Global Offset Table)
	1. GOT (Global Offset Table)
	1. GOT (Global Offset Table)
	1. GOT (Global Offset Table)
	RELRO: Relocation Read-Only (RELRO)
	Bypass: LIBC is not FULL RELRO
	2. malloc/free hooks
	2. malloc/free hooks
	2. malloc/free hooks
	2. malloc/free hooks
	슬라이드 번호 20
	3. __atexit() handlers
	3. __atexit() handlers
	슬라이드 번호 23
	4. _rtld_global (< glibc v2.34)
	4. _rtld_global (< glibc v2.34)
	4. rtld_global (>= glibc v2.34)
	4. rtld_global (>= glibc v2.34)
	5. Other function pointers
	FSOP (<= glibc-2.23)
	FSOP (<= glibc-2.23)
	FSOP (> glibc-2.24)
	FSOP (> glibc-2.24)
	FSOP (>= glibc-2.28)
	For more information
	An Economic Defense: Stack Cookie
	Notify your buffer overflow
	Think carefully when you design a mitigation
	Alterative stack protection: Shadow stack
	Trying to adopt shadow stack
	Control-flow Enforcement Technology (CET)

