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Today’s lecture

• Understand how to exploit arbitrary write

• Understand other issues in stack canary

• Understand shadow stack



An Economic Defense: Stack Cookie

• A defense specific to sequential stack overflow

• On a function call
• cookie = some_random_value

• Before the function returns
• if(cookie != some_random_value)

printf(“Your stack is smashed\n”);

COOKIE

BUFFER

BUFFER

BUFFER

SAVED %ebp

RETURN ADDR



Exploiting arbitrary write

• How can you exploit a vulnerability that allows you to write arbitrary  
memory with arbitrary content?

• i.e., arbitrary write
• One of the most powerful exploit primitives that we can have

• One way would be writing a return address as usual
• Your exploit is not reliable (i.e., hard to reproduce)
• A return address is not stable; it depends on your file name, environment 

variables, arguments, …



Example

int main() {
intptr_t *ptr, value;
read(0, &ptr, sizeof(ptr));
read(0, &value, sizeof(value));
*ptr = value;

puts(”Hello World”);
}

How can we change eip = 
0x41414141?



0. .dtors?

• If you check online materials, you might see .dtors
• .dtors is a list of functions that are called after exit()
• Overwriting .dtors entry makes you to. control your program counter

http://phrack.org/issues/66/6.html



0. .dtors?

• It had been extensively used in exploiting arbitrary write, but it is no 
longer available

• .dtors is replaced with .fini_array
• .fini_array is read-only

• Remember: no .dtors anymore!



1. GOT (Global Offset Table)

• Procedure Linkage Table (PLT)
• Stubs used to load dynamically linked functions 



1. GOT (Global Offset Table)

• PLT stub calls a function in its GOT entry



1. GOT (Global Offset Table)

struct link_map*: A data structure 
for shared objects

_dl_runtime_resolve(link_map*, offset): 
Lazily loads a function address based on offset



1. GOT (Global Offset Table)

• __dl_runtime_resolve
1. According to offset, get a function name in an ELF binary (e.g., puts)
2. Based on the function name, get its address
3. Update GOT with the address and call the function 
• This mechanism also can be used in attack: return_to_dl attack



1. GOT (Global Offset Table)

No more lookup again!



1. GOT (Global Offset Table)

from pwn import *
p = gdb.debug('./aaw’)
# puts@got
p.write(p32(0x804a014))
p.write("AAAA")
p.interactive()



RELRO: Relocation Read-Only (RELRO) 

• A security mitigation which makes some binary sections read-only

• Partial RELRO
• An (old) default setting in GCC
• No difference in attacks

• Full RELRO
• Prevent GOT overwrite
• Disable lazy loading (i.e, bind now)

• Resolve all dynamic functions and make GOT  read-only



Bypass: LIBC is not FULL RELRO

e.g., puts -> __strlen_avx2@GOT (in 64bit)

https://github.com/nobodyisnobody/docs/tree/main/code.execution.on.last.libc/



2. malloc/free hooks

• e.g., __malloc_hook, __free_hook: Called before and after malloc() 
and free()

• __malloc_hook(size)
• __free_hook(void*) int main() {

intptr_t *ptr, value;
read(0, &ptr, sizeof(ptr));
read(0, &value, sizeof(value));
*ptr = value;

puts(”Hello World”);
}Unfortunately, no 

malloc or free…?



2. malloc/free hooks

• Set breakpoint before calling puts & Run
• Set breakpoint on malloc() puts() uses malloc!

(for allocating buffer)



2. malloc/free hooks

from pwn import *
p = gdb.debug('./aaw’)
p.write(p32(0xf7f95788))
p.write("AAAA")
p.interactive()



2. malloc/free hooks



https://aidencom.tistory.com/1091



3. __atexit() handlers

int atexit(void (*function)(void));
• Registers the given function to be called at normal process termination, either 

via exit(3) or via return from the program's main()

• How is it implemented?
• __exit_funcs: a linked list of atexit handlers
• atexit handler (struct exit_function) contains a function pointer
• If we can corrupt it, then we can call this function after program terminates



3. __atexit() handlers

• PTR_MANGLE: Mitigation for __atexit() handlers
• Same mechanism has been applied for __malloc_hook() and __free_hook() in 

the recent  libc (but not ours)

• Idea: Using a random secret, modify a pointer
• Without leaking the secret, the pointer cannot be changeable
• If you have a more powerful primitive (e.g., arbitrary read), you can exploit it

Q: Why do we need 
rotation? 



https://aidencom.tistory.com/1091



4. _rtld_global (< glibc v2.34)

void
_dl_fini (void)
{

...
#ifdef SHARED
int do_audit = 0;

again:
#endif
for (Lmid_t ns = GL(dl_nns) - 1; ns >= 0; --ns)
{
/* Protect against concurrent loads and unloads. */
__rtld_lock_lock_recursive (GL(dl_load_lock));

-> &_rtld_global._dl_rtld_lock_recursive(
&_rtld_global._dl_load_lock.mutex);



4. _rtld_global (< glibc v2.34)

from pwn import *
p = gdb.debug('./aaw’)
p.write(p32(0xf7ffd874))
p.write("AAAA")
p.interactive()

• rtld_global._dl_rtld_lock_recursive system
• rtld_global._dl_load_lock “/bin/sh\x00”



4. rtld_global (>= glibc v2.34)

• Patch: _dl_rtld_lock_recursive is not used anymore



4. rtld_global (>= glibc v2.34)

• House of banana: hijack dl_ns array (link_map)

• https://abf1ag.github.io/2021/12/06/house-of-banana/
• You’ll need a translator to read the post

https://abf1ag.github.io/2021/12/06/house-of-banana/


5. Other function pointers

• Many programs contain function pointers

• If you can corrupt this, then it is sufficient to control your pc

• One of the example FILE* structure (e.g., fopen)
• It contains virtual function table for supporting polymorphism
• FILE* is more complex than you can imagine
• e.g., FSOP: File structure oriented programming

• Play with FILE Structure Yet Another Binary Exploitation Technique in HITB2018



struct FILE

FSOP (<= glibc-2.23)

• No validation on file structure  overwrite vtable pointer

_flags
_IO_read_ptr

…
_IO_FILE* _chain

…
fake vtable ptr
(_IO_jump_t*)



FSOP (<= glibc-2.23)

• FSOP using _chain and fake vtable ptrs

_IO_list_all

_flags
_IO_read_ptr

…
_IO_FILE* _chain

…
_IO_JUMP_t* vtable

_flags
_IO_read_ptr

…
_IO_FILE* _chain

…
fake vtable ptr 1

_flags
_IO_read_ptr

…
_IO_FILE* _chain

…
fake vtable ptr 2

evil func 1
evil func 2

…

evil func 3
evil func 4

…



FSOP (> glibc-2.24)

• No validation on file structure  overwrite vtable pointer
• Check: vtable ptr should be within the range of __libc_IO_vtables



FSOP (> glibc-2.24)

• No validation on file structure  overwrite vtable pointer
• Bypass: use functions that uses function pointers outside the vtable

• e.g., _IO_str_overflow
• Patched: these unchecked pointers are removed (glibc-2.28)



FSOP (>= glibc-2.28)

• House of apple: exploit unchecked _wide_data

• https://bbs.kanxue.com/thread-273418.htm
• You’ll need a translator to read the post

https://bbs.kanxue.com/thread-273418.htm


For more information

• https://github.com/nobodyisnobody/docs/tree/main/code.execution.
on.last.libc/



An Economic Defense: Stack Cookie

• A defense specific to sequential stack overflow

• On a function call
• cookie = some_random_value

• Before the function returns
• if(cookie != some_random_value)

printf(“Your stack is smashed\n”);

COOKIE

BUFFER

BUFFER

BUFFER

SAVED %ebp

RETURN ADDR



Notify your buffer overflow

• In Ubuntu 18.04 (My machine)

• In Ubuntu 16.04 (Our server)

• Why does this change happen??



Think carefully when you design a mitigation

• Q: Can this file name be corrupted?
• A: Yes it can. It is stored in stack!

• Q: If it can, what’s the consequence?
• A: You can read a content of arbitrary memory (i.e., arbitrary read)
• So, with stack overflow, you can still get arbitrary read

• So, it is patched now!  (CVE-2010-3192)



Alterative stack protection: Shadow stack

+ Not vulnerable to 
information disclosure
+ More secure with 
additional protection for 
shadow stack
- Performance overhead
- Backward compatibility

Ref: The Performance Cost of Shadow Stacks and Stack Canaries, AsiaCCS15



Trying to adopt shadow stack

• Intel designed a new set of instructions with Control-flow Enforcement 
Technology (CET)

• CALL/RET will copy its return address into shadow stack
• If a return address does not match with its shadow, then exception!

• Microsoft adopted CET from Windows 10 (20H1)
• Linux CET patch (2020. 12. 09)
• …



Control-flow Enforcement Technology (CET)

• Two components
• Shadow stack (SHSTK)
• Indirect Branch Tracking (IBT)

• Indirect Branch Tracking
• All indirect branch targets must start with ENDBR64/ENDBR32

• (ENDBR64/ENDBR32 is NOP on non-CET processors)

• Defend against ROP (Return oriented programming) & JOP (Jump 
oriented programming)
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