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Today’s lecture

• Understand fuzzing



What is software testing?

• Software testing is the process of evaluating and verifying that a 
software application or product meets specified requirements.

• Goals
• Ensures functionality and performance
• Identifies bugs or defects
• Improves overall quality



Example: Software testing

• my_sqrt: Find a square root using Newton-Raphson method

def my_sqrt(x):
"""Computes the square root of x, using

the Newton-Raphson method"""
approx = None
guess = x / 2
while approx != guess:

approx = guess
guess = (approx + x / approx) / 2

return approx
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Automated testing using pytest

• Whenever changes are made, run tests to check if my_sqrt is working
• Limitations: Can only test some manually specified test cases

def assertEquals(x, y, epsilon=1e-8):
assert abs(x - y) < epsilon

def test_my_sqrt():
assertEquals(my_sqrt(4), 2)
assertEquals(my_sqrt(9), 3)
assertEquals(my_sqrt(100), 10)



Is this implementation correct?

def my_sqrt(x):
"""Computes the square root of x, using

the Newton-Raphson method"""
approx = None
guess = x / 2
while approx != guess:

approx = guess
guess = (approx + x / approx) / 2

return approx



Bugs in the implementation

Traceback (most recent call last):
File "/home/insu/my_sqrt.py", line 9, in <module>
my_sqrt(0)

File "/home/insu/my_sqrt.py", line 6, in my_sqrt
guess = (approx + x / approx) / 2

ZeroDivisionError: float division by zero

my_sqrt(0)

my_sqrt(-1)

$ python3 my_sqrt.py
// Infinite loop!



Writing thorough tests is difficult!



Fuzzing

• Fuzzing is a  software  te sting techn ique  tha t involves 
inpu tting random  or abnorm al da ta  in to  a  p rogram  to  
uncover unexpected  behaviors, bugs, or vu lne rab ilitie s

• Challenges
• How to  genera te  inpu ts?
• How to  de tect bugs?
• …



https://softsec.kaist.ac.kr/~sangkilc/papers/manes-tse19.pdf



How to generate inputs?





Infinite monkey theorem

• A monkey hitting keys a 
random on a typewriter 
keyboard for an infinite 
amount of time

-> The complete works for 
William Shakespeare

But how much percentage? 



Generation vs Mutation

• Generation-based fuzzing
• Creates test inputs based on predefined rules, specifications, or formats
• e.g., Grammar-based fuzzing, …

• Mutation-based fuzzing
• Mutates existing, valid inputs to create test cases.



Generation-based fuzzing

• Utilizes domain knowledge for generating test cases

• E.g., domato (https://github.com/googleprojectzero/domato)

https://github.com/googleprojectzero/domato


Mutation-based fuzzing

• Mutates existing, valid inputs to create test cases.

• How it works
• Starts with a seed input (e.g., valid file or request)
• Introduces random or targeted changes (e.g., bit flips, truncations)

https://www.file-recovery.com/jpg-signature-format.htm



Coverage-guided fuzzing

Fuzzer

Seeds

Crash

ProgramTest cases
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*

Code coverage feedback



Without code coverage feedback,

x = input()

if x[0] == 'H’:
if x[1] == 'A’:

if x[2] == 'R’:
if x[3] == 'D’:

crash()

Seeds

x = ‘E4SY'

Test cases
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*
x = ‘E4SI' x = ‘S4SY'

x = ‘H4SY'

x = ‘PTSY'

x = ‘O4SY'

P(crash) = 2-32

…



After code coverage feedback,

x = input()

if x[0] == 'H’:
if x[1] == 'A’:

if x[2] == 'R’:
if x[3] == 'D’:

crash()

Seeds

x = ‘E4SY'

Test cases

*
x = ‘E4SI' x = ‘S4SY'

x = ‘H4SY'

x = ‘ETSY'

New code  
coverage!
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Generate test cases from a test case that  
introduces new code coverage

x = input()

if x[0] == 'H’:
if x[1] == 'A’:

if x[2] == 'R’:
if x[3] == 'D’:

crash()

Seeds

x = 'EASY'

Test cases

*
x = ‘H4SI'

x = ‘H4SY'
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New code  
coverage!

x = ‘HASY '

P(crash) = 2-32 = 2-8 x 2-2 =2-10
Per-byte 4 bytes



Examples: Coverage-guided fuzzing

• Fuzzer developed by Google
• Re-discover coverage-guided fuzzing
• Found hundreds of bugs in many programs  

e.g.,) Safari, Firefox, OpenSSL, …

libFuzzer

AFL
• LLVM community developed
• A library to include random testing as a part  

of projects
e.g.,) LLVM, Chromium, Tensorflow, …

OSS-Fuzz

• Use Google’s cloud resources to fuzz open-
source software

• 4 trillion test cases a week



JPEG files from scratch using AFL

https://lcamtuf.blogspot.com/2014/11/pulling-jpegs-out-of-thin-air.html



How to detect bugs?



Why is crash not enough?

• One way to detect bugs 
is to check whether 
crash happens.

• However, it is possible 
that the program exits 
normally even though 
bugs are triggered

#include <iostream>

void useAfterFree() {
int* data = new int[10];
data[0] = 42;

delete[] data; // Memory is freed

// Accessing the freed memory
std::cout << "Use after free: " << data[0] << s

td::endl;
}

int main() {
useAfterFree();
return 0;

}

// $ ./poc
// Use after free: 1481231392



AddressSanitizer

• A memory error detector for 
C/C++ programs

• Part of clang + gcc
• Add -fsanitize=address

• There are more variants
• E.g., MemorySanitizer,

UndefinedBehaviorSanitizer, …



Differential testing for detecting semantic errors

• A testing technique that compares the behavior of multiple 
implementations of the same specification.

• Focuses on identifying inconsistencies between them.



Example: CSmith

• A tool for finding bugs in C compilers
• https://github.com/csmith-project/csmith

• If the C program is a valid without any undefined behavior, results should be same!



LLM-aided fuzzing

https://security.googleblog.com/2024/06/hacking-for-defenders-approaches-to.html

https://security.googleblog.com/2024/06/hacking-for-defenders-approaches-to.html


LLM-only fuzzing

• E.g., fuzz4all: https://fuzz4all.github.io/





Limitations

• Limited Code Coverage
• Ineffective for Logic Bugs
• Requires Test Oracles
• Difficulty with Complex Input Formats
• Resource Intensive
• Struggles with Non-Deterministic Code
• …



Alternatives: Code auditing

• Google's Threat Analysis Group (TAG) analyzes and publishes 
vulnerabilities used in real attacks annually.

• https://googleprojectzero.github.io/0days-in-the-wild/rca.html

https://googleprojectzero.github.io/0days-in-the-wild/rca.html


https://i.blackhat.com/USA21/Wednesday-Handouts/us-21-Hack-Different-Pwning-IOS-14-With-Generation-Z-Bug.pdf



Open problem: Can we find 
such bugs automatically?



Reference

• https://www.fuzzingbook.org/
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