
Fuzzing
Insu Yun

Today’s lecture

• Understand fuzzing

What is software testing?

• Software testing is the process of evaluating and verifying that a
software application or product meets specified requirements.

• Goals
• Ensures functionality and performance
• Identifies bugs or defects
• Improves overall quality

Example: Software testing

• my_sqrt: Find a square root using Newton-Raphson method

def my_sqrt(x):
"""Computes the square root of x, using

the Newton-Raphson method"""
approx = None
guess = x / 2
while approx != guess:

approx = guess
guess = (approx + x / approx) / 2

return approx

𝑥𝑥𝑡𝑡+1 = 𝑥𝑥𝑡𝑡 −
𝑓𝑓 𝑥𝑥𝑡𝑡
𝑓𝑓′ 𝑥𝑥𝑡𝑡

= 𝑥𝑥𝑡𝑡 −
𝑥𝑥𝑡𝑡2−𝑛𝑛
2𝑥𝑥𝑡𝑡

= 𝑥𝑥𝑡𝑡+𝑛𝑛/𝑥𝑥𝑡𝑡
2

Automated testing using pytest

• Whenever changes are made, run tests to check if my_sqrt is working
• Limitations: Can only test some manually specified test cases

def assertEquals(x, y, epsilon=1e-8):
assert abs(x - y) < epsilon

def test_my_sqrt():
assertEquals(my_sqrt(4), 2)
assertEquals(my_sqrt(9), 3)
assertEquals(my_sqrt(100), 10)

Is this implementation correct?

def my_sqrt(x):
"""Computes the square root of x, using

the Newton-Raphson method"""
approx = None
guess = x / 2
while approx != guess:

approx = guess
guess = (approx + x / approx) / 2

return approx

Bugs in the implementation

Traceback (most recent call last):
File "/home/insu/my_sqrt.py", line 9, in <module>
my_sqrt(0)

File "/home/insu/my_sqrt.py", line 6, in my_sqrt
guess = (approx + x / approx) / 2

ZeroDivisionError: float division by zero

my_sqrt(0)

my_sqrt(-1)

$ python3 my_sqrt.py
// Infinite loop!

Writing thorough tests is difficult!

Fuzzing

• Fuzzing is a software te sting techn ique tha t involves
inpu tting random or abnorm al da ta in to a p rogram to
uncover unexpected behaviors, bugs, or vu lne rab ilitie s

• Challenges
• How to genera te inpu ts?
• How to de tect bugs?
• …

https://softsec.kaist.ac.kr/~sangkilc/papers/manes-tse19.pdf

How to generate inputs?

Infinite monkey theorem

• A monkey hitting keys a
random on a typewriter
keyboard for an infinite
amount of time

-> The complete works for
William Shakespeare

But how much percentage?

Generation vs Mutation

• Generation-based fuzzing
• Creates test inputs based on predefined rules, specifications, or formats
• e.g., Grammar-based fuzzing, …

• Mutation-based fuzzing
• Mutates existing, valid inputs to create test cases.

Generation-based fuzzing

• Utilizes domain knowledge for generating test cases

• E.g., domato (https://github.com/googleprojectzero/domato)

https://github.com/googleprojectzero/domato

Mutation-based fuzzing

• Mutates existing, valid inputs to create test cases.

• How it works
• Starts with a seed input (e.g., valid file or request)
• Introduces random or targeted changes (e.g., bit flips, truncations)

https://www.file-recovery.com/jpg-signature-format.htm

Coverage-guided fuzzing

Fuzzer

Seeds

Crash

ProgramTest cases

17

*

Code coverage feedback

Without code coverage feedback,

x = input()

if x[0] == 'H’:
if x[1] == 'A’:

if x[2] == 'R’:
if x[3] == 'D’:

crash()

Seeds

x = ‘E4SY'

Test cases

18

*
x = ‘E4SI' x = ‘S4SY'

x = ‘H4SY'

x = ‘PTSY'

x = ‘O4SY'

P(crash) = 2-32

…

After code coverage feedback,

x = input()

if x[0] == 'H’:
if x[1] == 'A’:

if x[2] == 'R’:
if x[3] == 'D’:

crash()

Seeds

x = ‘E4SY'

Test cases

*
x = ‘E4SI' x = ‘S4SY'

x = ‘H4SY'

x = ‘ETSY'

New code
coverage!

19

Generate test cases from a test case that
introduces new code coverage

x = input()

if x[0] == 'H’:
if x[1] == 'A’:

if x[2] == 'R’:
if x[3] == 'D’:

crash()

Seeds

x = 'EASY'

Test cases

*
x = ‘H4SI'

x = ‘H4SY'

20

New code
coverage!

x = ‘HASY '

P(crash) = 2-32 = 2-8 x 2-2 =2-10
Per-byte 4 bytes

Examples: Coverage-guided fuzzing

• Fuzzer developed by Google
• Re-discover coverage-guided fuzzing
• Found hundreds of bugs in many programs

e.g.,) Safari, Firefox, OpenSSL, …

libFuzzer

AFL
• LLVM community developed
• A library to include random testing as a part

of projects
e.g.,) LLVM, Chromium, Tensorflow, …

OSS-Fuzz

• Use Google’s cloud resources to fuzz open-
source software

• 4 trillion test cases a week

JPEG files from scratch using AFL

https://lcamtuf.blogspot.com/2014/11/pulling-jpegs-out-of-thin-air.html

How to detect bugs?

Why is crash not enough?

• One way to detect bugs
is to check whether
crash happens.

• However, it is possible
that the program exits
normally even though
bugs are triggered

#include <iostream>

void useAfterFree() {
int* data = new int[10];
data[0] = 42;

delete[] data; // Memory is freed

// Accessing the freed memory
std::cout << "Use after free: " << data[0] << s

td::endl;
}

int main() {
useAfterFree();
return 0;

}

// $./poc
// Use after free: 1481231392

AddressSanitizer

• A memory error detector for
C/C++ programs

• Part of clang + gcc
• Add -fsanitize=address

• There are more variants
• E.g., MemorySanitizer,

UndefinedBehaviorSanitizer, …

Differential testing for detecting semantic errors

• A testing technique that compares the behavior of multiple
implementations of the same specification.

• Focuses on identifying inconsistencies between them.

Example: CSmith

• A tool for finding bugs in C compilers
• https://github.com/csmith-project/csmith

• If the C program is a valid without any undefined behavior, results should be same!

LLM-aided fuzzing

https://security.googleblog.com/2024/06/hacking-for-defenders-approaches-to.html

https://security.googleblog.com/2024/06/hacking-for-defenders-approaches-to.html

LLM-only fuzzing

• E.g., fuzz4all: https://fuzz4all.github.io/

Limitations

• Limited Code Coverage
• Ineffective for Logic Bugs
• Requires Test Oracles
• Difficulty with Complex Input Formats
• Resource Intensive
• Struggles with Non-Deterministic Code
• …

Alternatives: Code auditing

• Google's Threat Analysis Group (TAG) analyzes and publishes
vulnerabilities used in real attacks annually.

• https://googleprojectzero.github.io/0days-in-the-wild/rca.html

https://googleprojectzero.github.io/0days-in-the-wild/rca.html

https://i.blackhat.com/USA21/Wednesday-Handouts/us-21-Hack-Different-Pwning-IOS-14-With-Generation-Z-Bug.pdf

Open problem: Can we find
such bugs automatically?

Reference

• https://www.fuzzingbook.org/

	Fuzzing
	Today’s lecture
	What is software testing?
	Example: Software testing
	Automated testing using pytest
	Is this implementation correct?
	Bugs in the implementation
	Writing thorough tests is difficult!
	Fuzzing
	슬라이드 번호 10
	How to generate inputs?
	슬라이드 번호 12
	Infinite monkey theorem
	Generation vs Mutation
	Generation-based fuzzing
	Mutation-based fuzzing
	Coverage-guided fuzzing
	Without code coverage feedback,
	After code coverage feedback,
	Generate test cases from a test case that introduces new code coverage
	Examples: Coverage-guided fuzzing
	JPEG files from scratch using AFL
	How to detect bugs?
	Why is crash not enough?
	AddressSanitizer
	Differential testing for detecting semantic errors
	Example: CSmith
	LLM-aided fuzzing
	LLM-only fuzzing
	슬라이드 번호 30
	Limitations
	Alternatives: Code auditing
	슬라이드 번호 33
	슬라이드 번호 34
	Reference

